Hidrogeles: avances y aplicaciones en la biotecnología

Autores/as

DOI:

https://doi.org/10.56048/MQR20225.9.4.2025.e1184

Palabras clave:

Hidrogeles; Materiales inteligentes; Biocompatibilidad; Liberación controlada; Biotecnología.

Resumen

La creciente demanda de materiales funcionales y sostenibles ha impulsado el desarrollo de hidrogeles inteligentes, redes poliméricas tridimensionales capaces de retener gran cantidad de agua y adaptarse a diversos estímulos ambientales. Estos materiales, caracterizados por su biocompatibilidad, alto contenido de agua y potencial biodegradabilidad, se sintetizan mediante diversas estrategias (reticulación química, física o mixta) que determinan sus propiedades estructurales finales y su funcionalidad. En esta revisión se abordan la clasificación y síntesis de hidrogeles (naturales, sintéticos e híbridos), así como sus propiedades estructurales y funcionales (capacidad de respuesta a estímulos ambientales como pH, temperatura o campos eléctricos, y mecanismos de liberación controlada). Además, se examinan sus aplicaciones biotecnológicas principales, incluyendo la agricultura (mejora de la retención de agua y nutrientes del suelo), la medicina (liberación controlada de fármacos, ingeniería de tejidos y medicina regenerativa) y la biotecnología ambiental (remediación y tratamiento de aguas). Se discuten los avances recientes en hidrogeles multifuncionales y nanocompuestos que posibilitan tecnologías emergentes como la bioimpresión 4D, y se destacan los desafíos actuales relacionados con la producción a escala, la sostenibilidad económica y los aspectos regulatorios (toxicidad de monómeros y ausencia de normativa estándar). Finalmente, se plantean perspectivas futuras, enfatizando la integración de nanotecnología, bioimpresión 3D y biosensores para mejorar el desempeño de los hidrogeles en aplicaciones biotecnológicas.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

    Cited

    DOI: 10.56048DOI

Biografía del autor/a

Jaime David Sevilla-Carrasco, UNIVERSIDAD ESTATAL DE MILAGRO

Docente

Alex Edwin Guillen-Bonilla, UNIVERSIDAD ESTATAL DE MILAGRO

Docente

Ronny Fabian Amaguay-Gómez, UNIVERSIDAD ESTATAL DE MILAGRO

Técnico de Laboratorio

Citas

Almawash, S., Osman, S. K., Mustafa, G., & El Hamd, M. A. (2022). Current and Future Prospective of Injectable Hydrogels—Design Challenges and Limitations. Pharmaceuticals, 15(3), 371. https://doi.org/10.3390/ph15030371

Alonso, J. M., Andrade del Olmo, J., Perez Gonzalez, R., & Saez-Martinez, V. (2021). Injectable Hydrogels: From Laboratory to Industrialization. Polymers, 13(4), 650. https://doi.org/10.3390/polym13040650

Andreazza, R., Morales, A., Pieniz, S., & Labidi, J. (2023). Gelatin-Based Hydrogels: Potential Biomaterials for Remediation. Polymers, 15(4), 1026. https://doi.org/10.3390/polym15041026

Backx, B. P. (2021). Smart materials and Green Synthesis: The perfect match for the future. 3(3), 7–11. https://doi.org/10.34256/IRJMT2132

Barrett-Catton, E., Ross, M. L., & Asuri, P. (2021). Multifunctional Hydrogel Nanocomposites for Biomedical Applications. Polymers, 13(6), 856. https://doi.org/10.3390/polym13060856

Baykara, T. (2019). Towards Autonomous and Intelligent Systems:The Role of Materials Science and Technology. 9(4), 1025–1029. https://doi.org/10.31031/RDMS.2019.09.000716

Bercea, M. (2022). Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers, 14(12), 2365. https://doi.org/10.3390/polym14122365

Bordbar-Khiabani, A., & Gasik, M. (2022). Smart Hydrogels for Advanced Drug Delivery Systems. International Journal of Molecular Sciences, 23(7), 3665. https://doi.org/10.3390/ijms23073665

Chen, G., Tang, W., Wang, X., Zhao, X., Chen, C., & Zhu, Z. (2019). Applications of Hydrogels with Special Physical Properties in Biomedicine. Polymers, 11(9), 1420. https://doi.org/10.3390/polym11091420

Ciuciu, A. I., & Cywiński, P. J. (2014). Two-photon polymerization of hydrogels–versatile solutions to fabricate well-defined 3D structures. RSC Advances, 4(85), 45504-45516. https://doi.org/10.1039/C4RA06892K

Correa, S., Grosskopf, A. K., Lopez Hernandez, H., Chan, D., Yu, A. C., Stapleton, L. M., & Appel, E. A. (2021). Translational Applications of Hydrogels. Chemical Reviews, 121(18), 11385–11457. https://doi.org/10.1021/ACS.CHEMREV.0C01177

de Campos, B. A., da Silva, N. C. B., Moda, L. S., Vidinha, P., & Maia-Obi, L. P. (2023). pH-Sensitive Degradable Oxalic Acid Crosslinked Hyperbranched Polyglycerol Hydrogel for Controlled Drug Release. Polymers, 15(7), 1795. https://doi.org/10.3390/polym15071795

Dsouza, A., Constantinidou, C., Arvanitis, T. N., Haddleton, D. M., Charmet, J., & Hand, R. A. (2022). Multifunctional Composite Hydrogels for Bacterial Capture, Growth/Elimination, and Sensing Applications. ACS Applied Materials & Interfaces, 14(42), 47323–47344. https://doi.org/10.1021/acsami.2c08582

El Sayed, M. M. (2023). Production of polymer hydrogel composites and their applications. Journal of Polymers and the Environment, 31(7), 2855-2879. https://doi.org/10.1007/s10924-023-02796-z

Elangwe, C. N., Morozkina, S. N., Olekhnovich, R. O., Polyakova, V. O., Krasichkov, A., Yablonskiy, P. K., & Uspenskaya, M. V. (2023). Pullulan-Based Hydrogels in Wound Healing and Skin Tissue Engineering Applications: A Review. International Journal of Molecular Sciences, 24(5), 4962. https://doi.org/10.3390/ijms24054962

Fan, W., Jensen, L. R., Dong, Y., Deloria, A. J., Xing, B., Yu, D., & Smedskjaer, M. (2022). Highly Stretchable, Swelling-Resistant, Self-Healed, and Biocompatible Dual-Reinforced Double Polymer Network Hydrogels. ACS Applied Bio Materials, 6(1), 228–237. https://doi.org/10.1021/acsabm.2c00856

Fang, W., Yang, M., Wang, L., Li, W., Liu, M., Jin, Y., ... & Fu, Q. (2023). Hydrogels for 3D bioprinting in tissue engineering and regenerative medicine: Current progress and challenges. International journal of bioprinting, 9(5), 759. https://doi.org/10.18063/ijb.759

Flores-Valenzuela, L. E., González-Fernández, J. V., & Carranza-Oropeza, M. V. (2023). Hydrogel Applicability for the Industrial Effluent Treatment: A Systematic Review and Bibliometric Analysis. Polymers, 15(11), 2417. https://doi.org/10.3390/polym15112417

García-Villén, F., Sánchez-Espejo, R., Borrego-Sánchez, A., Cerezo, P., Perioli, L., & Viseras, C. (2020). Safety of Nanoclay/Spring Water Hydrogels: Assessment and Mobility of Hazardous Elements. Pharmaceutics, 12(8), 764. https://doi.org/10.3390/pharmaceutics12080764

Ho, T.-C., Chang, C.-C., Chan, H.-P., Chung, T.-W., Shu, C.-W., Chuang, K.-P., Duh, T.-H., Yang, M.-H., & Tyan, Y.-C. (2022). Hydrogels: Properties and Applications in Biomedicine. Molecules, 27(9), 2902. https://doi.org/10.3390/molecules27092902

Jiang, T., Yang, T., Bao, Q., Sun, W., Yang, M., & Mao, C. (2022). Construction of tissue-customized hydrogels from cross-linkable materials for effective tissue regeneration. Journal of Materials Chemistry B, 10(25), 4741-4758. https://doi.org/10.1039/D1TB01935J

Kundu, R., Mahada, P., Chhirang, B., & Das, B. (2022). Cellulose hydrogels: Green and sustainable soft biomaterials. Current Research in Green and Sustainable Chemistry, 5, 100252. https://doi.org/10.1016/j.crgsc.2021.100252

Lee, C.-Y., Ho, Y.-C., Lee, S.-S., Li, Y.-C., Lai, M.-Y., & Kuan, Y.-H. (2022). Cytotoxicity and Apoptotic Mechanism of 2-Hydroxyethyl Methacrylate via Genotoxicity and the Mitochondrial-Dependent Intrinsic Caspase Pathway and Intracellular Reactive Oxygen Species Accumulation in Macrophages. Polymers, 14(16), 3378. https://doi.org/10.3390/polym14163378

Li, H., Wang, J., Luo, Y., Bai, B., & Cao, F. (2022). pH-Responsive Eco-Friendly Chitosan–Chlorella Hydrogel Beads for Water Retention and Controlled Release of Humic Acid. Water, 14(8), 1190. https://doi.org/10.3390/w14081190

Li, J., Vundrala, S. R., Jayathilaka, W. A. D. M., Chinnappan, A., Ramakrishna, S., & Ghosh, R. (2021). Intelligent Polymers, Fibers and Applications. Polymers, 13(9), 1427. https://doi.org/10.3390/POLYM13091427

Li, X., Sun, Q., Li, Q., Kawazoe, N., & Chen, G. (2018). Functional Hydrogels With Tunable Structures and Properties for Tissue Engineering Applications. Frontiers in Chemistry, 6, 499. https://doi.org/10.3389/FCHEM.2018.00499

Lin, F., Dimmitt, N., Perini, M. M. de L., Li, J., & Lin, C.-C. (2022). Injectable Acylhydrazone‐Linked RAFT Polymer Hydrogels for Sustained Protein Release and Cell Encapsulation (Adv. Healthcare Mater. 7/2022). Advanced Healthcare Materials, 11(7), 2270035. https://doi.org/10.1002/adhm.202270035

Lupu, A., Gradinaru, L. M., Gradinaru, V. R., & Bercea, M. (2023). Diversity of Bioinspired Hydrogels: From Structure to Applications. Gels, 9(5), 376. https://doi.org/10.3390/gels9050376

Majee, S. B. (2016). Introductory Chapter: An Overview of Hydrogels. InTech. https://doi.org/10.5772/64302

Malekmohammadi, S., Sedghi Aminabad, N., Sabzi, A., Zarebkohan, A., Razavi, M., Vosough, M., Bodaghi, M., & Maleki, H. (2021). Smart and Biomimetic 3D and 4D Printed Composite Hydrogels: Opportunities for Different Biomedical Applications. Biomedicines, 9(11), 1537. https://doi.org/10.3390/biomedicines9111537

Melia, H. R., Muckley, E. S., & Saal, J. E. (2021). Materials informatics and sustainability—the case for urgency. Data-Centric Engineering, 2, e19. https://doi.org/10.1017/DCE.2021.19

Nair, S. S., Zhu, J., Deng, Y., & Ragauskas, A. J. (2014). Hydrogels Prepared from Cross-Linked Nanofibrillated Cellulose. ACS Sustainable Chemistry & Engineering, 2(4), 772–780. https://doi.org/10.1021/SC400445T

Ning, X., Huang, J., A, Y., Yuan, N., Chen, C., & Lin, D. (2022). Research Advances in Mechanical Properties and Applications of Dual Network Hydrogels. International Journal of Molecular Sciences, 23(24), 15757. https://doi.org/10.3390/ijms232415757

Omar, J., Ponsford, D., Dreiss, C. A., Lee, T. C., & Loh, X. J. (2022). Supramolecular hydrogels: Design strategies and contemporary biomedical applications. Chemistry–An Asian Journal, 17(9), e202200081. https://doi.org/10.1002/asia.202200081

Rather, R. A., Bhat, M. A., & Shalla, A. H. (2022). An insight into Synthetic, Physiological aspect of Superabsorbent Hydrogels based on Carbohydrate type polymers for various Applications: A Review. Carbohydrate Polymer Technologies and Applications, 3, 100202. https://doi.org/10.1016/j.carpta.2022.100202

Sahmat, S. S., Rafii, M. Y., Oladosu, Y., Jusoh, M., Hakiman, M., & Mohidin, H. (2022). A Systematic Review of the Potential of a Dynamic Hydrogel as a Substrate for Sustainable Agriculture. Horticulturae, 8(11), 1026. https://doi.org/10.3390/horticulturae8111026

Sánchez-Cid, P., Jiménez-Rosado, M., Rubio-Valle, J. F., Romero, A., Ostos, F. J., Rafii-El-Idrissi Benhnia, M., & Perez-Puyana, V. (2022). Biocompatible and Thermoresistant Hydrogels Based on Collagen and Chitosan. Polymers, 14(2), 272. https://doi.org/10.3390/polym14020272

Sapuła, P., Bialik-Wąs, K., & Malarz, K. (2023). Are Natural Compounds a Promising Alternative to Synthetic Cross-Linking Agents in the Preparation of Hydrogels? Pharmaceutics, 15(1), 253. https://doi.org/10.3390/pharmaceutics15010253

Serna, J. A., Rueda-Gensini, L., Céspedes-Valenzuela, D. N., Cifuentes, J., Cruz, J. C., & Muñoz-Camargo, C. (2021). Recent Advances on Stimuli-Responsive Hydrogels Based on Tissue-Derived ECMs and Their Components: Towards Improving Functionality for Tissue Engineering and Controlled Drug Delivery. Polymers, 13(19), 3263. https://doi.org/10.3390/polym13193263

Singh, S. (2017). Emerging Scope and Trends of Intelligent Materials for Humanity. International Journal for Research in Applied Science and Engineering Technology, 5(4),805–813. https://doi.org/10.22214/IJRASET.2017.4148

Sood, N., Bhardwaj, A., Mehta, S., & Mehta, A. (2016). Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug delivery, 23(3), 748-770. https://doi.org/10.3109/10717544.2014.940091

Strätz, J., & Fischer, S. (2020). Tailored covalently cross-linked hydrogels based on oxidized cellulose sulfate and carboxymethyl chitosan by targeted adjustment of the storage modulus. Cellulose, 27(13), 7535–7542. https://doi.org/10.1007/S10570-020-03279-3

Sun, M., Li, H., Hou, Y., Huang, N., Xia, X., Zhu, H., ... & Xu, L. (2023). Multifunctional tendon-mimetic hydrogels. Science Advances, 9(7), eade6973. https://doi.org/10.1126/sciadv.ade6973

Tipa, C., Cidade, M. T., Borges, J. P., Costa, L. C., Silva, J. C., & Soares, P. I. P. (2022). Clay-Based Nanocomposite Hydrogels for Biomedical Applications: A Review. Nanomaterials, 12(19), 3308. https://doi.org/10.3390/nano12193308

Trombino, S., Sole, R., Di Gioia, M. L., Procopio, D., Curcio, F., & Cassano, R. (2023). Green Chemistry Principles for Nano- and Micro-Sized Hydrogel Synthesis. Molecules, 28(5), 2107. https://doi.org/10.3390/molecules28052107

Tsegay, F., Elsherif, M., & Butt, H. (2022). Smart 3D Printed Hydrogel Skin Wound Bandages: A Review. Polymers, 14(5), 1012. https://doi.org/10.3390/polym14051012

Vasile, C., Pamfil, D., Stoleru, E., & Baican, M. (2020). New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules, 25(7), 1539. https://doi.org/10.3390/molecules25071539

Vigata, M., Meinert, C., Hutmacher, D. W., & Bock, N. (2020). Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques. Pharmaceutics, 12(12), 1188. https://doi.org/10.3390/pharmaceutics12121188

Wang, C., Bai, J., Tian, P., Xie, R., Duan, Z., Lv, Q., & Tao, Y. (2021). The application status of nanoscale cellulose-based hydrogels in tissue engineering and regenerative biomedicine. Frontiers in Bioengineering and Biotechnology, 9, 732513. https://doi.org/10.3389/FBIOE.2021.732513

Wang, Q., Zhang, Y., Ma, Y., Wang, M., & Pan, G. (2023). Nano-crosslinked dynamic hydrogels for biomedical applications. Materials Today Bio, 20, 100640. https://doi.org/10.1016/j.mtbio.2023.100640

Willner, I. (2017). Stimuli-Controlled Hydrogels and Their Applications. Accounts of Chemical Research, 50(4), 657–658. https://doi.org/10.1021/ACS.ACCOUNTS.7B00142

Xu, F., Dawson, C., Lamb, M., Mueller, E., Stefanek, E., Akbari, M., & Hoare, T. (2022). Hydrogels for tissue engineering: addressing key design needs toward clinical translation. Frontiers in bioengineering and biotechnology, 10, 849831. https://doi.org/10.3389/fbioe.2022.849831

Xu, J., Tsai, Y.-L., & Hsu, S.-h. (2020). Design Strategies of Conductive Hydrogel for Biomedical Applications. Molecules, 25(22), 5296. https://doi.org/10.3390/molecules25225296

Zhou, X., Kandalai, S., Hossain, F., Zhang, N., Li, H., & Zheng, Q. (2023). pH-Responsive and Recyclable Hydrogels for Gas-Releasing and Scavenging. Macromolecular Rapid Communications, 44(8), e2300008. https://doi.org/10.1002/marc.202300008

Zu, G., Meijer, M., Mergel, O., Zhang, H., & van Rijn, P. (2021). 3D-Printable Hierarchical Nanogel-GelMA Composite Hydrogel System. Polymers, 13(15), 2508. https://doi.org/10.3390/polym13152508

Descargas

Publicado

2025-11-06

Cómo citar

Sevilla-Carrasco, J. D., Guillen-Bonilla, A. E., & Amaguay-Gómez, R. F. (2025). Hidrogeles: avances y aplicaciones en la biotecnología. MQRInvestigar, 9(4), e1184. https://doi.org/10.56048/MQR20225.9.4.2025.e1184