Visualización dinámica de fuerzas mediante interacción natural en educación STEM
DOI:
https://doi.org/10.56048/MQR20225.9.3.2025.e1074Palabras clave:
Diagramas de cuerpo libre; ambiente virtual; usabilidad; Leap Motion; motivación intrínseca; STEMResumen
En el aprendizaje de la física, se requiere comprensión de las interacciones entre fuerzas y el desarrollo del razonamiento científico. Sin embargo, los estudiantes suelen enfrentar dificultades al abstraer, representar gráficamente y conceptualizar las fuerzas que actúan sobre un objeto, lo que limita su capacidad de análisis y resolución de problemas. El presente estudio se centra en el diseño e implementación de un entorno interactivo que integra el sensor Leap Motion con la plataforma Unity, permitiendo a los estudiantes manipular diagramas de cuerpo libre en cinco escenarios virtuales. A través de la interacción natural basada en gestos de la mano, los participantes arrastraron y ubicaron etiquetas de fuerzas, experimentando de manera dinámica la construcción y análisis de los diagramas. La metodología adoptada fue de tipo cuantitativo con un diseño pre–post test, complementado con un componente cualitativo mediante la aplicación de una escala de usabilidad y un cuestionario de motivación intrínseca. La muestra estuvo compuesta por 25 estudiantes del curso introductorio a ingeniería. Los resultados evidenciaron mejoras significativas en la comprensión de los diagramas de cuerpo libre tras la intervención, así como una percepción de usabilidad elevada (SUS = 94,7) y altos niveles de motivación intrínseca (IMI = 6,55 en promedio). Estos hallazgos sugieren que la integración de tecnologías de interacción natural puede potenciar tanto el aprendizaje conceptual como la experiencia formativa en contextos educativos STEM.
Descargas
Métricas
Cited
DOI: 10.56048![]()
Citas
Abrahamson, D., & Abdu, R. (2021). Towards an ecological-dynamics design framework for embodied-interaction conceptual learning: The case of dynamic mathematics environments. Educational Technology Research and Development, 69(4), 1889-1923. https://doi.org/10.1007/s11423-020-09805-1
Alam, A., & Mohanty, A. (2023). Educational technology: Exploring the convergence of technology and pedagogy through mobility, interactivity, AI, and learning tools. Cogent Engineering. https://www.tandfonline.com/doi/abs/10.1080/23311916.2023.2283282
Arroba, C., Becerra, E., Espinoza, J., & Buele, J. (2023). Innovating Chemistry Education: Integrating Cultural Knowledge through a Practical Guide and Augmented Reality. En R. Valencia-García, M. Bucaram-Leverone, J. Del Cioppo-Morstadt, N. Vera-Lucio, & P. H. Centanaro-Quiroz (Eds.), Technologies and Innovation (pp. 265-276). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-45682-4_19
Bagher, M. M., Sajjadi, P., Wallgrün, J. O., La Femina, P. C., & Klippel, A. (2021). Move The Object or Move The User: The Role of Interaction Techniques on Embodied Learning in VR. Frontiers in Virtual Reality, 2. https://doi.org/10.3389/frvir.2021.695312
Bhiri, N. M., Ameur, S., Jegham, I., Alouani, I., & Ben Khalifa, A. (2025). 2MLMD: Multi-modal Leap Motion Dataset for Home Automation Hand Gesture Recognition Systems. Arabian Journal for Science and Engineering, 50(10), 7511-7535. https://doi.org/10.1007/s13369-024-09396-6
Chiu, W.-K. (2021). Pedagogy of Emerging Technologies in Chemical Education during the Era of Digitalization and Artificial Intelligence: A Systematic Review. Education Sciences, 11(11), 709. https://doi.org/10.3390/educsci11110709
Fang, K., & Wang, J. (2024). Interactive Design With Gesture and Voice Recognition in Virtual Teaching Environments. IEEE Access, 12, 4213-4224. https://doi.org/10.1109/ACCESS.2023.3348846
Faresta, R. A., Nicholas, T. Z. S. B., Chi, Y., Sinambela, I. A. N., & Mopoliu, A. Z. (2024). Utilization of Technology in Physics Education: A Literature Review and Implications for the Future Physics Learning. Lensa: Jurnal Kependidikan Fisika, 12(1), 1-27. https://doi.org/10.33394/j-lkf.v12i1.11676
Gabriels, S., Muna, N., & le Roux, K. (2022). The Affordances of Visual Modes in Pedagogy on the Physics of Motion in Physiotherapy Education. En L. Shapiro & P. M. Rea (Eds.), Biomedical Visualisation: Volume 12 ‒ The Importance of Context in Image-Making (pp. 87-109). Springer International Publishing. https://doi.org/10.1007/978-3-031-10889-1_4
Georgiou, Y., Tsivitanidou, O., & Ioannou, A. (2021). Learning experience design with immersive virtual reality in physics education. Educational Technology Research and Development, 69(6), 3051-3080. https://doi.org/10.1007/s11423-021-10055-y
Kao, D., & Harrell, D. F. (2018). The Effects of Badges and Avatar Identification on Play and Making in Educational Games. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1-19. https://doi.org/10.1145/3173574.317417
Liu, Y., & Liu, Y. (2025). Advancing STEM Education for Sustainability: The Impact of Graphical Knowledge Visualization and User Experience on Continuance Intention in Mixed-Reality Environments. Sustainability, 17(9), 3869. https://doi.org/10.3390/su17093869
Makransky, G., & Petersen, G. B. (2021). The Cognitive Affective Model of Immersive Learning (CAMIL): A Theoretical Research-Based Model of Learning in Immersive Virtual Reality. Educational Psychology Review, 33(3), 937-958. https://doi.org/10.1007/s10648-020-09586-2
Mystakidis, S., Berki, E., & Valtanen, J.-P. (2021). Deep and Meaningful E-Learning with Social Virtual Reality Environments in Higher Education: A Systematic Literature Review. Applied Sciences, 11(5), 2412. https://doi.org/10.3390/app11052412
Niyomufasha, T., Ntivuguruzwa, C., & Mugabo, L. R. (2024). The engineering students’ use of multiple representations in mechanics problems solving at a selected public university in Rwanda. Cogent Education. https://www.tandfonline.com/doi/abs/10.1080/2331186X.2024.2372941
Osadchyi, V. V., Valko, N. V., & Kuzmich, L. V. (2021). Using augmented reality technologies for STEM education organization. Journal of Physics: Conference Series, 1840(1), 012027. https://doi.org/10.1088/1742-6596/1840/1/012027
Pranata, O. D., & Noperma, N. (2023). Critical Thinking Skills in Rotational Dynamics: Learning Physics With and Without Free-body Diagrams. Tarbawi : Jurnal Ilmu Pendidikan, 19(2), 153-164. https://doi.org/10.32939/tarbawi.v19i2.4215
Pratiwi, I. K., Kusairi, S., & Sunaryono. (2021). Analyzing students’ skill in drawing a free-body diagram. AIP Conference Proceedings, 2330(1). https://doi.org/10.1063/5.0043440
Prayogi, S., & Verawati, N. N. S. P. (2024). Physics Learning Technology for Sustainable Development Goals (SDGs): A Literature Study. International Journal of Ethnoscience and Technology in Education, 1(2), 155-191. https://doi.org/10.33394/ijete.v1i2.12316
Schmidt, R., & Stumpe, B. (2025). Systematic review of mobile augmented reality applications in geography education. Review of Education, 13(1). https://doi.org/10.1002/rev3.70042
Shrestha, S., Shan, Y., Emerson, R., & Hosseini, Z. (2025). Developing and Usability Testing of an Augmented Reality Tool for Online Engineering Education. IEEE Transactions on Learning Technologies, 18, 13-24. https://doi.org/10.1109/TLT.2024.3520413
Tang, K.-S. (2023). The characteristics of diagrams in scientific explanations: Multimodal integration of written and visual modes of representation in junior high school textbooks. 107(3), 741-772. https://doi.org/10.1002/sce.21787
Taylor, H. A., Burte, H., & Renshaw, K. T. (2023). Connecting spatial thinking to STEM learning through visualizations. Nature Reviews Psychology, 2(10), 637-653. https://doi.org/10.1038/s44159-023-00224-6
Utami, N. S., & Nurlaela, A. (2021). The influence of STEM (science, technology, engineering, and mathematics) learning approach on students’ learning outcomes on newton’s law concept. Journal of Physics: Conference Series, 1836(1), 012066. https://doi.org/10.1088/1742-6596/1836/1/012066
Varela-Aldás, J., Buele, J., Jadan-Guerrero, J., & Andaluz, V. H. (2020). Teaching STEM Competencies Through an Educational Mobile Robot. En P. Zaphiris & A. Ioannou (Eds.), Learning and Collaboration Technologies. Human and Technology Ecosystems (pp. 560-573). Springer International Publishing. https://doi.org/10.1007/978-3-030-50506-6_38
Vázquez-Sánchez, A., & Delgado, F. (2025). A competency assessment model for free-body diagrams construction in mechanical engineering students: A case study. European Journal of Engineering Education. https://www.tandfonline.com/doi/abs/10.1080/03043797.2025.2526831
Villada Castillo, J. F., Bohorquez Santiago, L., & Martínez García, S. (2025). Optimization of Physics Learning Through Immersive Virtual Reality: A Study on the Efficacy of Serious Games. Applied Sciences, 15(6), 3405. https://doi.org/10.3390/app15063405
Vlachogianni, P., & Tselios, N. (2022). Perceived usability evaluation of educational technology using the System Usability Scale (SUS): A systematic review. Journal of Research on Technology in Education. https://www.tandfonline.com/doi/abs/10.1080/15391523.2020.1867938
Ziatdinov, R., & Valles, J. R. (2022). Synthesis of Modeling, Visualization, and Programming in GeoGebra as an Effective Approach for Teaching and Learning STEM Topics. Mathematics, 10(3), 398. https://doi.org/10.3390/math10030398
Publicado
Cómo citar
Número
Sección
Categorías
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores se comprometen a respetar la información académica de otros autores, y a ceder los derechos de autor a la Revista MQRInvestigar, para que el artículo pueda ser editado, publicado y distribuido. El contenido de los artículos científicos y de las publicaciones que aparecen en la revista es responsabilidad exclusiva de sus autores. La distribución de los artículos publicados se realiza bajo una licencia 

























