Visualización dinámica de fuerzas mediante interacción natural en educación STEM

Autores/as

DOI:

https://doi.org/10.56048/MQR20225.9.3.2025.e1074

Palabras clave:

Diagramas de cuerpo libre; ambiente virtual; usabilidad; Leap Motion; motivación intrínseca; STEM

Resumen

En el aprendizaje de la física, se requiere comprensión de las interacciones entre fuerzas y el desarrollo del razonamiento científico. Sin embargo, los estudiantes suelen enfrentar dificultades al abstraer, representar gráficamente y conceptualizar las fuerzas que actúan sobre un objeto, lo que limita su capacidad de análisis y resolución de problemas. El presente estudio se centra en el diseño e implementación de un entorno interactivo que integra el sensor Leap Motion con la plataforma Unity, permitiendo a los estudiantes manipular diagramas de cuerpo libre en cinco escenarios virtuales. A través de la interacción natural basada en gestos de la mano, los participantes arrastraron y ubicaron etiquetas de fuerzas, experimentando de manera dinámica la construcción y análisis de los diagramas. La metodología adoptada fue de tipo cuantitativo con un diseño pre–post test, complementado con un componente cualitativo mediante la aplicación de una escala de usabilidad y un cuestionario de motivación intrínseca. La muestra estuvo compuesta por 25 estudiantes del curso introductorio a ingeniería. Los resultados evidenciaron mejoras significativas en la comprensión de los diagramas de cuerpo libre tras la intervención, así como una percepción de usabilidad elevada (SUS = 94,7) y altos niveles de motivación intrínseca (IMI = 6,55 en promedio). Estos hallazgos sugieren que la integración de tecnologías de interacción natural puede potenciar tanto el aprendizaje conceptual como la experiencia formativa en contextos educativos STEM.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

    Cited

    DOI: 10.56048DOI

Biografía del autor/a

Jennifer Samanta Hurtado-Caina, UNIVERSIDAD BOLIVARIANA DEL ECUADOR

 

Génesis Yessenia Miranda-Caina, UNIVERSIDAD BOLIVARIANA DEL ECUADOR

Lcda. Ciencias de la Educación

Ramón Guzmán-Hernández, UNIVERSIDAD BOLIVARIANA DEL ECUADOR

Ph.D. en Ciencias Pedagógicas

Miguel Eduardo Baque-Arteaga, UNIVERSIDAD BOLIVARIANA DEL ECUADOR

Ing. en Sistemas, Mgtr. en Sistemas de Información Gerencial

Citas

Abrahamson, D., & Abdu, R. (2021). Towards an ecological-dynamics design framework for embodied-interaction conceptual learning: The case of dynamic mathematics environments. Educational Technology Research and Development, 69(4), 1889-1923. https://doi.org/10.1007/s11423-020-09805-1

Alam, A., & Mohanty, A. (2023). Educational technology: Exploring the convergence of technology and pedagogy through mobility, interactivity, AI, and learning tools. Cogent Engineering. https://www.tandfonline.com/doi/abs/10.1080/23311916.2023.2283282

Arroba, C., Becerra, E., Espinoza, J., & Buele, J. (2023). Innovating Chemistry Education: Integrating Cultural Knowledge through a Practical Guide and Augmented Reality. En R. Valencia-García, M. Bucaram-Leverone, J. Del Cioppo-Morstadt, N. Vera-Lucio, & P. H. Centanaro-Quiroz (Eds.), Technologies and Innovation (pp. 265-276). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-45682-4_19

Bagher, M. M., Sajjadi, P., Wallgrün, J. O., La Femina, P. C., & Klippel, A. (2021). Move The Object or Move The User: The Role of Interaction Techniques on Embodied Learning in VR. Frontiers in Virtual Reality, 2. https://doi.org/10.3389/frvir.2021.695312

Bhiri, N. M., Ameur, S., Jegham, I., Alouani, I., & Ben Khalifa, A. (2025). 2MLMD: Multi-modal Leap Motion Dataset for Home Automation Hand Gesture Recognition Systems. Arabian Journal for Science and Engineering, 50(10), 7511-7535. https://doi.org/10.1007/s13369-024-09396-6

Chiu, W.-K. (2021). Pedagogy of Emerging Technologies in Chemical Education during the Era of Digitalization and Artificial Intelligence: A Systematic Review. Education Sciences, 11(11), 709. https://doi.org/10.3390/educsci11110709

Fang, K., & Wang, J. (2024). Interactive Design With Gesture and Voice Recognition in Virtual Teaching Environments. IEEE Access, 12, 4213-4224. https://doi.org/10.1109/ACCESS.2023.3348846

Faresta, R. A., Nicholas, T. Z. S. B., Chi, Y., Sinambela, I. A. N., & Mopoliu, A. Z. (2024). Utilization of Technology in Physics Education: A Literature Review and Implications for the Future Physics Learning. Lensa: Jurnal Kependidikan Fisika, 12(1), 1-27. https://doi.org/10.33394/j-lkf.v12i1.11676

Gabriels, S., Muna, N., & le Roux, K. (2022). The Affordances of Visual Modes in Pedagogy on the Physics of Motion in Physiotherapy Education. En L. Shapiro & P. M. Rea (Eds.), Biomedical Visualisation: Volume 12 ‒ The Importance of Context in Image-Making (pp. 87-109). Springer International Publishing. https://doi.org/10.1007/978-3-031-10889-1_4

Georgiou, Y., Tsivitanidou, O., & Ioannou, A. (2021). Learning experience design with immersive virtual reality in physics education. Educational Technology Research and Development, 69(6), 3051-3080. https://doi.org/10.1007/s11423-021-10055-y

Kao, D., & Harrell, D. F. (2018). The Effects of Badges and Avatar Identification on Play and Making in Educational Games. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1-19. https://doi.org/10.1145/3173574.317417

Liu, Y., & Liu, Y. (2025). Advancing STEM Education for Sustainability: The Impact of Graphical Knowledge Visualization and User Experience on Continuance Intention in Mixed-Reality Environments. Sustainability, 17(9), 3869. https://doi.org/10.3390/su17093869

Makransky, G., & Petersen, G. B. (2021). The Cognitive Affective Model of Immersive Learning (CAMIL): A Theoretical Research-Based Model of Learning in Immersive Virtual Reality. Educational Psychology Review, 33(3), 937-958. https://doi.org/10.1007/s10648-020-09586-2

Mystakidis, S., Berki, E., & Valtanen, J.-P. (2021). Deep and Meaningful E-Learning with Social Virtual Reality Environments in Higher Education: A Systematic Literature Review. Applied Sciences, 11(5), 2412. https://doi.org/10.3390/app11052412

Niyomufasha, T., Ntivuguruzwa, C., & Mugabo, L. R. (2024). The engineering students’ use of multiple representations in mechanics problems solving at a selected public university in Rwanda. Cogent Education. https://www.tandfonline.com/doi/abs/10.1080/2331186X.2024.2372941

Osadchyi, V. V., Valko, N. V., & Kuzmich, L. V. (2021). Using augmented reality technologies for STEM education organization. Journal of Physics: Conference Series, 1840(1), 012027. https://doi.org/10.1088/1742-6596/1840/1/012027

Pranata, O. D., & Noperma, N. (2023). Critical Thinking Skills in Rotational Dynamics: Learning Physics With and Without Free-body Diagrams. Tarbawi : Jurnal Ilmu Pendidikan, 19(2), 153-164. https://doi.org/10.32939/tarbawi.v19i2.4215

Pratiwi, I. K., Kusairi, S., & Sunaryono. (2021). Analyzing students’ skill in drawing a free-body diagram. AIP Conference Proceedings, 2330(1). https://doi.org/10.1063/5.0043440

Prayogi, S., & Verawati, N. N. S. P. (2024). Physics Learning Technology for Sustainable Development Goals (SDGs): A Literature Study. International Journal of Ethnoscience and Technology in Education, 1(2), 155-191. https://doi.org/10.33394/ijete.v1i2.12316

Schmidt, R., & Stumpe, B. (2025). Systematic review of mobile augmented reality applications in geography education. Review of Education, 13(1). https://doi.org/10.1002/rev3.70042

Shrestha, S., Shan, Y., Emerson, R., & Hosseini, Z. (2025). Developing and Usability Testing of an Augmented Reality Tool for Online Engineering Education. IEEE Transactions on Learning Technologies, 18, 13-24. https://doi.org/10.1109/TLT.2024.3520413

Tang, K.-S. (2023). The characteristics of diagrams in scientific explanations: Multimodal integration of written and visual modes of representation in junior high school textbooks. 107(3), 741-772. https://doi.org/10.1002/sce.21787

Taylor, H. A., Burte, H., & Renshaw, K. T. (2023). Connecting spatial thinking to STEM learning through visualizations. Nature Reviews Psychology, 2(10), 637-653. https://doi.org/10.1038/s44159-023-00224-6

Utami, N. S., & Nurlaela, A. (2021). The influence of STEM (science, technology, engineering, and mathematics) learning approach on students’ learning outcomes on newton’s law concept. Journal of Physics: Conference Series, 1836(1), 012066. https://doi.org/10.1088/1742-6596/1836/1/012066

Varela-Aldás, J., Buele, J., Jadan-Guerrero, J., & Andaluz, V. H. (2020). Teaching STEM Competencies Through an Educational Mobile Robot. En P. Zaphiris & A. Ioannou (Eds.), Learning and Collaboration Technologies. Human and Technology Ecosystems (pp. 560-573). Springer International Publishing. https://doi.org/10.1007/978-3-030-50506-6_38

Vázquez-Sánchez, A., & Delgado, F. (2025). A competency assessment model for free-body diagrams construction in mechanical engineering students: A case study. European Journal of Engineering Education. https://www.tandfonline.com/doi/abs/10.1080/03043797.2025.2526831

Villada Castillo, J. F., Bohorquez Santiago, L., & Martínez García, S. (2025). Optimization of Physics Learning Through Immersive Virtual Reality: A Study on the Efficacy of Serious Games. Applied Sciences, 15(6), 3405. https://doi.org/10.3390/app15063405

Vlachogianni, P., & Tselios, N. (2022). Perceived usability evaluation of educational technology using the System Usability Scale (SUS): A systematic review. Journal of Research on Technology in Education. https://www.tandfonline.com/doi/abs/10.1080/15391523.2020.1867938

Ziatdinov, R., & Valles, J. R. (2022). Synthesis of Modeling, Visualization, and Programming in GeoGebra as an Effective Approach for Teaching and Learning STEM Topics. Mathematics, 10(3), 398. https://doi.org/10.3390/math10030398

Descargas

Publicado

2025-09-29

Cómo citar

Hurtado-Caina, J. S., Miranda-Caina, G. Y., Guzmán-Hernández, R., & Baque-Arteaga, M. E. (2025). Visualización dinámica de fuerzas mediante interacción natural en educación STEM. MQRInvestigar, 9(3), e1074. https://doi.org/10.56048/MQR20225.9.3.2025.e1074

Artículos más leídos del mismo autor/a

<< < 1 2 3