Impacto De La Inteligencia Artificial En El Aprendizaje Autónomo De Estudiantes Universitarios
DOI:
https://doi.org/10.56048/MQR20225.9.3.2025.e985Palabras clave:
inteligencia artificial; aprendizaje autónomo; satisfacción; intención de uso de IAResumen
El presente estudio, analiza el impacto de la inteligencia artificial (IA) en el aprendizaje autónomo de estudiantes universitarios, integrando el Modelo de Expectativa‑Confirmación (ECM). Aplicando un diseño cuantitativo, no experimental y de corte transversal, y utilizando un cuestionario con escalas tipo Likert, se encuestó a una de 350 estudiantes, para posteriormente realizar el análisis de datos, utilizando la técnica PLS‑SEM, con el software SmartPLS, versión 4. Las escalas mostraron adecuada fiabilidad y validez (α ≥ .834; CR ≥ .913; AVE ≥ .740); y los resultados indicaron que la utilidad percibida incrementa significativamente la satisfacción, así como la confirmación de expectativas. A su vez, la satisfacción es el predictor más robusto de la intención de continuidad en el uso de IA para el aprendizaje autónomo. Por otra parte, la relación directa entre utilidad percibida e intención no fue significativa, sugiriendo un efecto indirecto mediado por la satisfacción. Teóricamente, se refuerza la pertinencia del ECM para contextos educativos mediados por IA y se evidencia el papel central de la satisfacción. A nivel práctico, los hallazgos recomiendan implementar soluciones de IA que alineen expectativas y experiencia de uso, con retroalimentación oportuna, personalización y apoyo a la autorregulación.
Descargas
Métricas
Cited
DOI: 10.56048![]()
Citas
AL-Tkhayneh, K. M., Alghazo, E. M., & Tahat, D. (2023). The advantages and disadvantages of using artificial intelligence in education. Journal of Educational and Social Research, 13(4), 105. https://doi.org/10.36941/jesr-2023-0094
Avramenko, A., & Bulanova, E. (2024). Prospects for the development of student self-study in the context of integrating artificial intelligence technologies into foreign language education. Rhema. https://doi.org/10.31862/2500-2953-2024-1-79-91
Bao, H. (2024). Learning evaluation method based on artificial intelligence technology and its application in education. Journal of Electrical Systems, 20(3s), 1833-1842. https://doi.org/10.52783/jes.1722
Baharum, A., Fai, C., Ismail, R., Ismail, I., Deris, F., & Noor, N. (2021). Evaluation of appliances mobile controller system using expectation-confirmation theory model. Bulletin of Electrical Engineering and Informatics, 10(4), 2119-2129. https://doi.org/10.11591/eei.v10i4.3061
Blancas Sánchez, J., Camborda Zamudio, M., Quispe López, C., & Coaquira Rojo, C. A. (2024). Gamified and artificial intelligence-assisted knowledge base in a social platform for self-learning in higher education. 2024 International Symposium on Accreditation of Engineering and Computing Education (ICACIT), 1–6. https://doi.org/10.1109/ICACIT62963.2024.10788662
Dhia, A. W. and Kholid, M. N. (2021). Explaining e-wallet continuance intention: a modified expectation confirmation model. Jurnal Minds: Manajemen Ide Dan Inspirasi, 8(2), 287. https://doi.org/10.24252/minds.v8i2.23592
Feng, M., Zhang, Q., & Yan, J. (2023). Exploring the effectiveness of individualized learning trajectories in university smart sports education classrooms: a design and implementation study. Journal of Social Science Humanities and Literature, 6(5), 67-73. https://doi.org/10.53469/jsshl.2023.06(05).10
Gotavade, T. S. (2024). Artificial intelligence ecosystem for automating self-directed teaching. arXiv. https://doi.org/10.48550/arXiv.2411.07300
Gutiérrez-Castillo, J. J., Tena, R. R., & León-Garrido, A. (2025). Beneficios de la Inteligencia Artificial en el aprendizaje de los estudiantes universitarios: una revisión sistemática. Edutec, Revista Electrónica De Tecnología Educativa, (91), 185-206.
Hair Jr, J. F., Matthews, L. M., Matthews, R. L., & Sarstedt, M. (2017). PLS-SEM or CB-SEM: updated guidelines on which method to use. International Journal of Multivariate Data Analysis, 1(2), 107-123
Han, B. (2019). Application of artificial intelligence in autonomous english learning among college students. International Journal of Emerging Technologies in Learning (Ijet), 14(06), 63. https://doi.org/10.3991/ijet.v14i06.10157
Kline, R. B. (2023). Principles and practice of structural equation modeling. Guilford publications.
Макаренко, О., Borysenko, O., Horokhivska, T., Kozub, V., & Yaremenko, D. (2024). Embracing artificial intelligence in education: shaping the learning path for future professionals. Multidisciplinary Science Journal, 6, 2024ss0720. https://doi.org/10.31893/multiscience.2024ss0720
Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of marketing research, 17(4), 460-469.
Pan, G., Mao, Y., Song, Z., & Nie, H. (2024). Research on the influencing factors of adult learners' intent to use online education platforms based on expectation confirmation theory. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-63747-9
Quinde, G. A. L., Muñoz, M. Y. T., Suárez, J. M. R., Villarreal, R. E. P., Vélez, W. A. Z., & Laínez, A. A. D. P. (2024). Perception of university students on the use of artificial intelligence (ai) tools for the development of autonomous learning. Revista De Gestão Social E Ambiental, 18(2), e06170. https://doi.org/10.24857/rgsa.v18n2-136
Salas‐Pilco, S. Z. and Yang, Y. (2022). Artificial intelligence applications in latin american higher education: a systematic review. International Journal of Educational Technology in Higher Education, 19(1). https://doi.org/10.1186/s41239-022-00326-w
Wang, L., & Li, W. (2024). The impact of AI usage on university students’ willingness for autonomous learning. Behavioral Sciences, 14(10), 956. https://doi.org/10.3390/bs14100956
Wang, M. and Wang, J. (2019). Understanding solvers' continuance intention in crowdsourcing contest platform: an extension of expectation-confirmation model. Journal of Theoretical and Applied Electronic Commerce Research, 14(3), 17-33. https://doi.org/10.4067/s0718-18762019000300103
Wu, D., Zhang, S., Ma, Z., Yue, X. G., & Dong, R. K. (2024). Unlocking potential: Key factors shaping undergraduate self-directed learning in AI-enhanced educational environments. Systems, 12(9), 32. https://doi.org/10.3390/systems12090332
Xia, Q., Chiu, T. K. F., & Chai, C. (2022). The moderating effects of gender and need satisfaction on self-regulated learning through artificial intelligence. Education and Information Technologies, 28, 8691–8713. https://doi.org/10.1007/s10639-022-11547-x
Younas, M., El-Dakhs, D. A. S., & Jiang, Y. (2025). A comprehensive systematic review of AI-driven approaches to self-directed learning. IEEE Access, 13, 38387–38403. https://doi.org/10.1109/ACCESS.2025.3546319
Zhou, J., & Zhang, H. (2024). Factors influencing university students’ continuance intentions towards self-directed learning using artificial intelligence tools. Applied Sciences, 14(18), 8363. https://doi.org/10.3390/app14188363
Zhu, T., Liu, B., Song, M., & Wu, J. (2021). Effects of service recovery expectation and recovery justice on customer citizenship behavior in the e-retailing context. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.658153
Publicado
Cómo citar
Número
Sección
Categorías
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores se comprometen a respetar la información académica de otros autores, y a ceder los derechos de autor a la Revista MQRInvestigar, para que el artículo pueda ser editado, publicado y distribuido. El contenido de los artículos científicos y de las publicaciones que aparecen en la revista es responsabilidad exclusiva de sus autores. La distribución de los artículos publicados se realiza bajo una licencia 

























