Materiales sostenibles y tecnologías avanzadas para la construcción resiliente y de bajo impacto ambiental

Autores/as

DOI:

https://doi.org/10.56048/MQR20225.9.3.2025.e785

Palabras clave:

Materiales sostenibles; tecnologías avanzadas; construcción resiliente; impacto ambiental

Resumen

En el presente artículo se propuso describir las propiedades de los materiales sostenibles y el desempeño de las tecnologías avanzadas para una construcción resiliente y de bajo impacto ambiental. La metodología se trabajó bajo un tipo de investigación descriptiva, a fin de poder caracterizar los materiales y tecnologías innovadoras que permitan minimizar el impacto ambiental. Se trabajó con una muestra de 320 elementos, a los cuales se les aplicó una encuesta tipo cuestionario de 13 ítems, en donde se midieron las variables del estudio, materiales sostenibles y tecnologías avanzadas. Los hallazgos arrojaron que existe la necesidad de un accionar que promueva la construcción sostenible para lograr minimizar el impacto ambiental; se requiere una capacitación o formación técnica de los ingenieros en cuanto al uso de las tecnologías avanzadas, también que los incentivos económicos se aumenten y las normativas sean claras en ese sentido. Las conclusiones apuntan que la mayoría de los profesionales de la construcción en Huancayo conocen y utilizan los materiales sostenibles. Y, también perciben estos materiales sostenibles como resistentes, efectivos y duraderos para ayudar a mitigar el impacto ambiental, de esta forma se confirma que su uso es viable en proyectos que busquen resiliencia estructural y sostenibilidad ambiental.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

    Cited

    DOI: 10.56048DOI

Biografía del autor/a

David Ramos-Piñas, UNIVERSIDAD PERUANA LOS ANDES

Magíster en Ingeniería civil y en Investigación y docencia universitaria

Lipselotte de Jesús Infante-Rivera, UNIVERSIDAD ADVENTISTA DE CHILE

Docente Investigadora del Núcleo de Investigación

Citas

Boley, J. W., Van Rees, W. M., Lissandrello, C., Horenstein, M. N., Truby, R. L., Kotikian, A., Lewis, J. A., & Mahadevan, L. (2019). Shape-shifting structured lattices via multimaterial 4D printing. Proceedings of the National Academy of Sciences of the United States of America, 116(42), 20856–20862. https://doi.org/10.1073/PNAS.1908806116/SUPPL_FILE/PNAS.1908806116.SM05.MOV

Casady, C. B., Cepparulo, A., & Giuriato, L. (2024). Public-private partnerships for low-carbon, climate-resilient infrastructure: Insights from the literature. Journal of Cleaner Production, 470, 143338. https://doi.org/10.1016/J.JCLEPRO.2024.143338

Chen, S., Li, J., Shi, H., Chen, X., Liu, G., Meng, S., & Lu, J. (2023). Lightweight and geometrically complex ceramics derived from 4D printed shape memory precursor with reconfigurability and programmability for sensing and actuation applications. Chemical Engineering Journal, 455, 140655. https://doi.org/10.1016/J.CEJ.2022.140655

Correa, D., Poppinga, S., Mylo, M. D., Westermeier, A. S., Bruchmann, B., Menges, A., & Speck, T. (2020). 4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philosophical Transactions of the Royal Society A, 378(2167). https://doi.org/10.1098/RSTA.2019.0445

Dixit, A., & Kumar Das, S. (2025). Mechanical, microstructural, and durability assessment of cement slurry waste and coal combustion ash mixture as a sustainable subgrade construction material: Experimental and mechanistic modeling approach. Construction and Building Materials, 458, 139550. https://doi.org/10.1016/J.CONBUILDMAT.2024.139550

Gong, F., Sun, X., Takahashi, Y., Maekawa, K., & Jin, W. (2023). Computational modeling of combined frost damage and alkali–silica reaction on the durability and fatigue life of RC bridge decks. Journal of Intelligent Construction, 1(1), 9180001. https://doi.org/10.26599/JIC.2023.9180001

Hidalgo Quispe, O. A. (2025). Construcción que Contamina, Gestión que Transforma: Un Análisis Correlacional del Manejo de los Residuos de la Construcción y Demolición en Pasco, hacia un Futuro Sostenible. TecnoHumanismo, ISSN-e 2710-2394, Vol. 5, No. 1, 2025 (Ejemplar Dedicado a: Tecnología, Justicia y Gobernanza: Retos Digitales En La Selección y Evaluación de Magistrados), Págs. 1-314, 5(1), 1–314. https://dialnet.unirioja.es/servlet/articulo?codigo=10182410&info=resumen&idioma=SPA

IEA. (2023). Seguimiento del progreso de la energía limpia en 2023: análisis - AIE. https://www.iea.org/reports/tracking-clean-energy-progress-2023

Jayashankar, D. K., Gupta, S. S., Sanandiya, N. D., Fernandez, J. D., & Tracy, K. (2020). Fiber reinforced composite manufacturing for passive actuators. International Journal of Advanced Manufacturing Technology, 109(5–6), 1493–1509. https://doi.org/10.1007/S00170-020-05744-6/METRICS

Jia, J., Baah, W. A., Zheng, C., Ding, L., & Wu, Y. (2024). New stress–strain model and intelligent quality control technology for cemented material dam. Journal of Intelligent Construction, 2(1), 9180033. https://doi.org/10.26599/JIC.2023.9180033

Küttenbaum, S., Braml, T., Taffe, A., Keßler, S., & Maack, S. (2021). Reliability assessment of existing structures using results of nondestructive testing. Structural Concrete, 22(5), 2895–2915. https://doi.org/10.1002/SUCO.202100226;WGROUP:STRING:PUBLICATION

Lao, J. C., Xu, L. Y., Huang, B. T., Dai, J. G., & Shah, S. P. (2022). Strain-hardening Ultra-High-Performance Geopolymer Concrete (UHPGC): Matrix design and effect of steel fibers. Composites Communications, 30, 101081. https://doi.org/10.1016/J.COCO.2022.101081

Li, P., Wang, H., Nie, D., Wang, D., & Wang, C. (2023). A method to analyze the long-term durability performance of underground reinforced concrete culvert structures under coupled mechanical and environmental loads. Journal of Intelligent Construction, 1(2), 9180011. https://doi.org/10.26599/JIC.2023.9180011

Li, S., Chan, T. M., & Young, B. (2022). Behavior of GFRP-concrete double tube composite columns. Thin-Walled Structures, 178, 109490. https://doi.org/10.1016/J.TWS.2022.109490

Li, V. C. (2019). Engineered Cementitious Composites (ECC): Bendable Concrete for Sustainable ... - Victor C. Li - Google Libros (Primera Edición). Springer. https://books.google.co.ve/books?hl=es&lr=&id=dQiWDwAAQBAJ&oi=fnd&pg=PR5&ots=MfOGJRsKKc&sig=JDvF4RtKIKZmcXVg1OzOMwTrdl4&redir_esc=y#v=onepage&q&f=false

Ma, L., Sun, M., & Zhang, Y. (2024). The Mechanical and Self-Sensing Properties of Carbon Fiber- and Polypropylene Fiber-Reinforced Engineered Cementitious Composites Utilizing Environmentally Friendly Glass Aggregate. Buildings 2024, Vol. 14, Page 938, 14(4), 938. https://doi.org/10.3390/BUILDINGS14040938

Naseem, S., & Rizwan, M. (2025). Sustainable construction and combo nanocellulose: A synergistic approach to greener building materials. Energy and Buildings, 328, 115218. https://doi.org/10.1016/J.ENBUILD.2024.115218

Niazy, D., Ashraf, M., Bodaghi, M., & Zolfagharian, A. (2024). Resilient city perspective: 4D printing in art, architecture and construction. Materials Today Sustainability, 26, 100708. https://doi.org/10.1016/J.MTSUST.2024.100708

Paris, J. M., Roessler, J. G., Ferraro, C. C., Deford, H. D., & Townsend, T. G. (2016). A review of waste products utilized as supplements to Portland cement in concrete. Journal of Cleaner Production, 121, 1–18. https://doi.org/10.1016/J.JCLEPRO.2016.02.013

Real, E., Arrayago, I., & Mirambell, E. (2025). REVOLUTIONIZING STEEL STRUCTURES: BRIDGING RESEARCH AND SUSTAINABLE DESIGN FOR FUTURE SOCIETAL IMPACT. Thin-Walled Structures, 113609. https://doi.org/10.1016/J.TWS.2025.113609

Ren, C., Wang, J., Duan, K., Li, X., & Wang, D. (2024). Effects of Steel Slag on the Hydration Process of Solid Waste-Based Cementitious Materials. Materials 2024, Vol. 17, Page 1999, 17(9), 1999. https://doi.org/10.3390/MA17091999

Shi, X., Tian, Z., Chen, W., Si, B., & Jin, X. (2016). A review on building energy efficient design optimization rom the perspective of architects. Renewable and Sustainable Energy Reviews, 65, 872–884. https://doi.org/10.1016/J.RSER.2016.07.050

Shin, M., Baltazar, J. C., Haberl, J. S., Frazier, E., & Lynn, B. (2019). Evaluation of the energy performance of a net zero energy building in a hot and humid climate. Energy and Buildings, 204, 109531. https://doi.org/10.1016/J.ENBUILD.2019.109531

Su, H., Xu, X., Zuo, S., Zhang, S., & Yan, X. (2023). Research progress in monitoring hydraulic concrete damage based on acoustic emission. Journal of Intelligent Construction, 1(4), 9180024. https://doi.org/10.26599/JIC.2023.9180024

Subedi, S., Arce, G. A., Noorvand, H., Hassan, M. M., Barbato, M., & Mohammad, L. N. (2021). Properties of Engineered Cementitious Composites with Raw Sugarcane Bagasse Ash Used as Sand Replacement. Journal of Materials in Civil Engineering, 33(9), 04021231. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003892

Sun, X., Wang, S., Jin, J., Wang, Z., & Gong, F. (2023). Computational methods of mass transport in concrete under stress and crack conditions: A review. Journal of Intelligent Construction, 1(2), 9180015. https://doi.org/10.26599/JIC.2023.9180015

Uddin, M. A., Shahabuddin, M., Jameel, M., Rahman, M., Hosen, A., Alanazi, F., AbdelMongy, M., & El-kady, M. S. (2025). Sustainable construction practices in urban areas: innovative materials, technologies, and policies to address environmental challenges. Energy and Buildings, 341, 115831. https://doi.org/10.1016/J.ENBUILD.2025.115831

Wang, L., Ur Rehman, N., Curosu, I., Zhu, Z., Beigh, M. A. B., Liebscher, M., Chen, L., Tsang, D. C. W., Hempel, S., & Mechtcherine, V. (2021). On the use of limestone calcined clay cement (LC3) in high-strength strain-hardening cement-based composites (HS-SHCC). Cement and Concrete Research, 144, 106421. https://doi.org/10.1016/J.CEMCONRES.2021.106421

Wang, Z., Gong, F., & Maekawa, K. (2023). Multi-scale and multi-chemo–physics lifecycle evaluation of structural concrete under environmental and mechanical impacts. Journal of Intelligent Construction, 1(1), 9180003. https://doi.org/10.26599/JIC.2023.9180003

Xu, L. Y., Huang, B. T., Li, V. C., & Dai, J. G. (2022). High-strength high-ductility Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC) incorporating geopolymer fine aggregates. Cement and Concrete Composites, 125, 104296. https://doi.org/10.1016/J.CEMCONCOMP.2021.104296

Xu, L. Y., Lao, J. C., Qian, L. P., Khan, M., Xie, T. Y., & Huang, B. T. (2024). Low-carbon high-strength engineered geopolymer composites (HS-EGC) with full-volume fly ash precursor: Role of silica modulus. Journal of CO2 Utilization, 88, 102948. https://doi.org/10.1016/J.JCOU.2024.102948

Xu, L. Y., Yu, J., Huang, B. T., Lao, J. C., Wu, H. L., Jiang, X., Xie, T. Y., & Dai, J. G. (2025). Green and low-carbon matrices for Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC): Toward sustainable and resilient infrastructure. Journal of Cleaner Production, 496, 144968. https://doi.org/10.1016/J.JCLEPRO.2025.144968

Yao, G., Sun, W., Yang, Y., Wang, M., Li, R., & Zheng, Y. (2023). Multi-volume variable scale bitmap data object classification algorithm architectural concrete color difference detection. Journal of Intelligent Construction, 1(2), 9180010. https://doi.org/10.26599/JIC.2023.9180010

Yu, J., Yao, J., Lin, X., Li, H., Lam, J. Y. K., Leung, C. K. Y., Sham, I. M. L., & Shih, K. (2018). Tensile performance of sustainable Strain-Hardening Cementitious Composites with hybrid PVA and recycled PET fibers. Cement and Concrete Research, 107, 110–123. https://doi.org/10.1016/J.CEMCONRES.2018.02.013

Zhu, X., Abe, H., Hayashi, D., & Tanaka, H. (2023). Behavioral characteristics of RC beams with non-uniform corrosion along the reinforcement. Journal of Intelligent Construction, 1(3), 9180019. https://doi.org/10.

Descargas

Publicado

2025-07-06

Cómo citar

Ramos-Piñas, D., & Infante-Rivera, L. de J. (2025). Materiales sostenibles y tecnologías avanzadas para la construcción resiliente y de bajo impacto ambiental . MQRInvestigar, 9(3), e785. https://doi.org/10.56048/MQR20225.9.3.2025.e785