Materiales sostenibles y tecnologías avanzadas para la construcción resiliente y de bajo impacto ambiental
DOI:
https://doi.org/10.56048/MQR20225.9.3.2025.e785Palabras clave:
Materiales sostenibles; tecnologías avanzadas; construcción resiliente; impacto ambientalResumen
En el presente artículo se propuso describir las propiedades de los materiales sostenibles y el desempeño de las tecnologías avanzadas para una construcción resiliente y de bajo impacto ambiental. La metodología se trabajó bajo un tipo de investigación descriptiva, a fin de poder caracterizar los materiales y tecnologías innovadoras que permitan minimizar el impacto ambiental. Se trabajó con una muestra de 320 elementos, a los cuales se les aplicó una encuesta tipo cuestionario de 13 ítems, en donde se midieron las variables del estudio, materiales sostenibles y tecnologías avanzadas. Los hallazgos arrojaron que existe la necesidad de un accionar que promueva la construcción sostenible para lograr minimizar el impacto ambiental; se requiere una capacitación o formación técnica de los ingenieros en cuanto al uso de las tecnologías avanzadas, también que los incentivos económicos se aumenten y las normativas sean claras en ese sentido. Las conclusiones apuntan que la mayoría de los profesionales de la construcción en Huancayo conocen y utilizan los materiales sostenibles. Y, también perciben estos materiales sostenibles como resistentes, efectivos y duraderos para ayudar a mitigar el impacto ambiental, de esta forma se confirma que su uso es viable en proyectos que busquen resiliencia estructural y sostenibilidad ambiental.
Descargas
Métricas
Cited
DOI: 10.56048![]()
Citas
Boley, J. W., Van Rees, W. M., Lissandrello, C., Horenstein, M. N., Truby, R. L., Kotikian, A., Lewis, J. A., & Mahadevan, L. (2019). Shape-shifting structured lattices via multimaterial 4D printing. Proceedings of the National Academy of Sciences of the United States of America, 116(42), 20856–20862. https://doi.org/10.1073/PNAS.1908806116/SUPPL_FILE/PNAS.1908806116.SM05.MOV
Casady, C. B., Cepparulo, A., & Giuriato, L. (2024). Public-private partnerships for low-carbon, climate-resilient infrastructure: Insights from the literature. Journal of Cleaner Production, 470, 143338. https://doi.org/10.1016/J.JCLEPRO.2024.143338
Chen, S., Li, J., Shi, H., Chen, X., Liu, G., Meng, S., & Lu, J. (2023). Lightweight and geometrically complex ceramics derived from 4D printed shape memory precursor with reconfigurability and programmability for sensing and actuation applications. Chemical Engineering Journal, 455, 140655. https://doi.org/10.1016/J.CEJ.2022.140655
Correa, D., Poppinga, S., Mylo, M. D., Westermeier, A. S., Bruchmann, B., Menges, A., & Speck, T. (2020). 4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philosophical Transactions of the Royal Society A, 378(2167). https://doi.org/10.1098/RSTA.2019.0445
Dixit, A., & Kumar Das, S. (2025). Mechanical, microstructural, and durability assessment of cement slurry waste and coal combustion ash mixture as a sustainable subgrade construction material: Experimental and mechanistic modeling approach. Construction and Building Materials, 458, 139550. https://doi.org/10.1016/J.CONBUILDMAT.2024.139550
Gong, F., Sun, X., Takahashi, Y., Maekawa, K., & Jin, W. (2023). Computational modeling of combined frost damage and alkali–silica reaction on the durability and fatigue life of RC bridge decks. Journal of Intelligent Construction, 1(1), 9180001. https://doi.org/10.26599/JIC.2023.9180001
Hidalgo Quispe, O. A. (2025). Construcción que Contamina, Gestión que Transforma: Un Análisis Correlacional del Manejo de los Residuos de la Construcción y Demolición en Pasco, hacia un Futuro Sostenible. TecnoHumanismo, ISSN-e 2710-2394, Vol. 5, No. 1, 2025 (Ejemplar Dedicado a: Tecnología, Justicia y Gobernanza: Retos Digitales En La Selección y Evaluación de Magistrados), Págs. 1-314, 5(1), 1–314. https://dialnet.unirioja.es/servlet/articulo?codigo=10182410&info=resumen&idioma=SPA
IEA. (2023). Seguimiento del progreso de la energía limpia en 2023: análisis - AIE. https://www.iea.org/reports/tracking-clean-energy-progress-2023
Jayashankar, D. K., Gupta, S. S., Sanandiya, N. D., Fernandez, J. D., & Tracy, K. (2020). Fiber reinforced composite manufacturing for passive actuators. International Journal of Advanced Manufacturing Technology, 109(5–6), 1493–1509. https://doi.org/10.1007/S00170-020-05744-6/METRICS
Jia, J., Baah, W. A., Zheng, C., Ding, L., & Wu, Y. (2024). New stress–strain model and intelligent quality control technology for cemented material dam. Journal of Intelligent Construction, 2(1), 9180033. https://doi.org/10.26599/JIC.2023.9180033
Küttenbaum, S., Braml, T., Taffe, A., Keßler, S., & Maack, S. (2021). Reliability assessment of existing structures using results of nondestructive testing. Structural Concrete, 22(5), 2895–2915. https://doi.org/10.1002/SUCO.202100226;WGROUP:STRING:PUBLICATION
Lao, J. C., Xu, L. Y., Huang, B. T., Dai, J. G., & Shah, S. P. (2022). Strain-hardening Ultra-High-Performance Geopolymer Concrete (UHPGC): Matrix design and effect of steel fibers. Composites Communications, 30, 101081. https://doi.org/10.1016/J.COCO.2022.101081
Li, P., Wang, H., Nie, D., Wang, D., & Wang, C. (2023). A method to analyze the long-term durability performance of underground reinforced concrete culvert structures under coupled mechanical and environmental loads. Journal of Intelligent Construction, 1(2), 9180011. https://doi.org/10.26599/JIC.2023.9180011
Li, S., Chan, T. M., & Young, B. (2022). Behavior of GFRP-concrete double tube composite columns. Thin-Walled Structures, 178, 109490. https://doi.org/10.1016/J.TWS.2022.109490
Li, V. C. (2019). Engineered Cementitious Composites (ECC): Bendable Concrete for Sustainable ... - Victor C. Li - Google Libros (Primera Edición). Springer. https://books.google.co.ve/books?hl=es&lr=&id=dQiWDwAAQBAJ&oi=fnd&pg=PR5&ots=MfOGJRsKKc&sig=JDvF4RtKIKZmcXVg1OzOMwTrdl4&redir_esc=y#v=onepage&q&f=false
Ma, L., Sun, M., & Zhang, Y. (2024). The Mechanical and Self-Sensing Properties of Carbon Fiber- and Polypropylene Fiber-Reinforced Engineered Cementitious Composites Utilizing Environmentally Friendly Glass Aggregate. Buildings 2024, Vol. 14, Page 938, 14(4), 938. https://doi.org/10.3390/BUILDINGS14040938
Naseem, S., & Rizwan, M. (2025). Sustainable construction and combo nanocellulose: A synergistic approach to greener building materials. Energy and Buildings, 328, 115218. https://doi.org/10.1016/J.ENBUILD.2024.115218
Niazy, D., Ashraf, M., Bodaghi, M., & Zolfagharian, A. (2024). Resilient city perspective: 4D printing in art, architecture and construction. Materials Today Sustainability, 26, 100708. https://doi.org/10.1016/J.MTSUST.2024.100708
Paris, J. M., Roessler, J. G., Ferraro, C. C., Deford, H. D., & Townsend, T. G. (2016). A review of waste products utilized as supplements to Portland cement in concrete. Journal of Cleaner Production, 121, 1–18. https://doi.org/10.1016/J.JCLEPRO.2016.02.013
Real, E., Arrayago, I., & Mirambell, E. (2025). REVOLUTIONIZING STEEL STRUCTURES: BRIDGING RESEARCH AND SUSTAINABLE DESIGN FOR FUTURE SOCIETAL IMPACT. Thin-Walled Structures, 113609. https://doi.org/10.1016/J.TWS.2025.113609
Ren, C., Wang, J., Duan, K., Li, X., & Wang, D. (2024). Effects of Steel Slag on the Hydration Process of Solid Waste-Based Cementitious Materials. Materials 2024, Vol. 17, Page 1999, 17(9), 1999. https://doi.org/10.3390/MA17091999
Shi, X., Tian, Z., Chen, W., Si, B., & Jin, X. (2016). A review on building energy efficient design optimization rom the perspective of architects. Renewable and Sustainable Energy Reviews, 65, 872–884. https://doi.org/10.1016/J.RSER.2016.07.050
Shin, M., Baltazar, J. C., Haberl, J. S., Frazier, E., & Lynn, B. (2019). Evaluation of the energy performance of a net zero energy building in a hot and humid climate. Energy and Buildings, 204, 109531. https://doi.org/10.1016/J.ENBUILD.2019.109531
Su, H., Xu, X., Zuo, S., Zhang, S., & Yan, X. (2023). Research progress in monitoring hydraulic concrete damage based on acoustic emission. Journal of Intelligent Construction, 1(4), 9180024. https://doi.org/10.26599/JIC.2023.9180024
Subedi, S., Arce, G. A., Noorvand, H., Hassan, M. M., Barbato, M., & Mohammad, L. N. (2021). Properties of Engineered Cementitious Composites with Raw Sugarcane Bagasse Ash Used as Sand Replacement. Journal of Materials in Civil Engineering, 33(9), 04021231. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003892
Sun, X., Wang, S., Jin, J., Wang, Z., & Gong, F. (2023). Computational methods of mass transport in concrete under stress and crack conditions: A review. Journal of Intelligent Construction, 1(2), 9180015. https://doi.org/10.26599/JIC.2023.9180015
Uddin, M. A., Shahabuddin, M., Jameel, M., Rahman, M., Hosen, A., Alanazi, F., AbdelMongy, M., & El-kady, M. S. (2025). Sustainable construction practices in urban areas: innovative materials, technologies, and policies to address environmental challenges. Energy and Buildings, 341, 115831. https://doi.org/10.1016/J.ENBUILD.2025.115831
Wang, L., Ur Rehman, N., Curosu, I., Zhu, Z., Beigh, M. A. B., Liebscher, M., Chen, L., Tsang, D. C. W., Hempel, S., & Mechtcherine, V. (2021). On the use of limestone calcined clay cement (LC3) in high-strength strain-hardening cement-based composites (HS-SHCC). Cement and Concrete Research, 144, 106421. https://doi.org/10.1016/J.CEMCONRES.2021.106421
Wang, Z., Gong, F., & Maekawa, K. (2023). Multi-scale and multi-chemo–physics lifecycle evaluation of structural concrete under environmental and mechanical impacts. Journal of Intelligent Construction, 1(1), 9180003. https://doi.org/10.26599/JIC.2023.9180003
Xu, L. Y., Huang, B. T., Li, V. C., & Dai, J. G. (2022). High-strength high-ductility Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC) incorporating geopolymer fine aggregates. Cement and Concrete Composites, 125, 104296. https://doi.org/10.1016/J.CEMCONCOMP.2021.104296
Xu, L. Y., Lao, J. C., Qian, L. P., Khan, M., Xie, T. Y., & Huang, B. T. (2024). Low-carbon high-strength engineered geopolymer composites (HS-EGC) with full-volume fly ash precursor: Role of silica modulus. Journal of CO2 Utilization, 88, 102948. https://doi.org/10.1016/J.JCOU.2024.102948
Xu, L. Y., Yu, J., Huang, B. T., Lao, J. C., Wu, H. L., Jiang, X., Xie, T. Y., & Dai, J. G. (2025). Green and low-carbon matrices for Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC): Toward sustainable and resilient infrastructure. Journal of Cleaner Production, 496, 144968. https://doi.org/10.1016/J.JCLEPRO.2025.144968
Yao, G., Sun, W., Yang, Y., Wang, M., Li, R., & Zheng, Y. (2023). Multi-volume variable scale bitmap data object classification algorithm architectural concrete color difference detection. Journal of Intelligent Construction, 1(2), 9180010. https://doi.org/10.26599/JIC.2023.9180010
Yu, J., Yao, J., Lin, X., Li, H., Lam, J. Y. K., Leung, C. K. Y., Sham, I. M. L., & Shih, K. (2018). Tensile performance of sustainable Strain-Hardening Cementitious Composites with hybrid PVA and recycled PET fibers. Cement and Concrete Research, 107, 110–123. https://doi.org/10.1016/J.CEMCONRES.2018.02.013
Zhu, X., Abe, H., Hayashi, D., & Tanaka, H. (2023). Behavioral characteristics of RC beams with non-uniform corrosion along the reinforcement. Journal of Intelligent Construction, 1(3), 9180019. https://doi.org/10.
Publicado
Cómo citar
Número
Sección
Categorías
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores se comprometen a respetar la información académica de otros autores, y a ceder los derechos de autor a la Revista MQRInvestigar, para que el artículo pueda ser editado, publicado y distribuido. El contenido de los artículos científicos y de las publicaciones que aparecen en la revista es responsabilidad exclusiva de sus autores. La distribución de los artículos publicados se realiza bajo una licencia 

























