Importancia de la terapia de bacteriófagos en infecciones bacterianas multirresistentes

Autores/as

DOI:

https://doi.org/10.56048/MQR20225.9.2.2025.e579

Palabras clave:

Bacteriófagos; infecciones multirresistentes; resistencia antimicrobiana, alternativa terapéutica, fagoterapia

Resumen

El creciente peligro que representan las bacterias multirresistentes ha obstaculizado profundamente la efectividad de los antibióticos convencionales, subrayando la urgente necesidad de opciones terapéuticas alternativas. La terapia con fagos, definida por la aplicación de virus que atacan bacterias específicas, ha sido revitalizada como una estrategia de elección en este sentido. El objetivo de la investigación es examinar la importancia de la terapia de bacteriófagos como alternativa para el tratamiento de infecciones multirresistentes. Llevándose a cabo una revisión bibliográfica de la literatura sobre estudios clínicos y experimentales centrados en la eficacia de los bacteriófagos contra infecciones bacterianas multirresistentes. Los estudios revisados mostraron que la terapia con fagos es altamente específica en bacterias multirresistentes, a diferencia de las terapias tradicionales. Los estudios clínicos muestran un éxito terapéutico en las infecciones consideradas multirresistentes, particularmente en Pseudomonas aeruginosa, Klebsiella pneumoniae y Staphylococcus aureus (MRSA). El impacto de la terapia con bacteriófagos es un complemento frente a los antibióticos convencionales, por lo que, esta terapia debe ser considerada como una alternativa en el tratamiento de infecciones multirresistentes.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

    Cited

    DOI: 10.56048DOI

Biografía del autor/a

Diana Cristina Mayorga-Morales, UNIVERSIDAD TÉCNICA DE AMBATO

Estudiante de la Carrera de Laboratorio Clínico

Ana Verónica De-la-Torre-Fiallos, UNIVERSIDAD TÉCNICA DE AMBATO

Licenciada en Laboratorio Clínico

Citas

Ahmad, N., Joji, R. M., & Shahid, M. (2023). Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Frontiers in Cellular and Infection Microbiology, 12, 1065–1096. https://doi.org/10.3389/FCIMB.2022.1065796/XML/NLM

Al-Shayeb, B., Sachdeva, R., Chen, L. X., Ward, F., Munk, P., Devoto, A., Castelle, C. J., Olm, M. R., Bouma-Gregson, K., Amano, Y., He, C., Méheust, R., Brooks, B., Thomas, A., Lavy, A., Matheus-Carnevali, P., Sun, C., Goltsman, D. S. A., Borton, M. A., … Banfield, J. F. (2020). Clades of huge phages from across Earth’s ecosystems. Nature, 578(7795), 425–431. https://doi.org/10.1038/S41586-020-2007-4;TECHMETA=23,45;SUBJMETA=1321,171,2142,2565,326,631;KWRD=BACTERIOPHAGES,ENVIRONMENTAL+MICROBIOLOGY,METAGENOMICS

Aranaga, C., Pantoja, L. D., Martínez, E. A., & Falco, A. (2022). Phage Therapy in the Era of Multidrug Resistance in Bacteria: A Systematic Review. International Journal of Molecular Sciences, 23(9), 4577. https://doi.org/10.3390/IJMS23094577

Asenjo, A., Oteo, J., & Alós, J. (2021). What’s new in mechanisms of antibiotic resistance in bacteria of clinical origin? Enfermedades infecciosas y microbiologia clinica (English ed.), 39(6), 291–299. https://doi.org/10.1016/J.EIMCE.2020.02.017

Aslam, B., Khurshid, M., Arshad, M., Muzammil, S., Rasool, M., Yasmeen, N., Shah, T., Chaudhry, T., Rasool, M., Shahid, A., Xueshan, X., & Baloch, Z. (2021). Antibiotic Resistance: One Health One World Outlook. Frontiers in cellular and infection microbiology, 11. https://doi.org/10.3389/FCIMB.2021.771510

Aslam, S., Lampley, E., Wooten, D., Karris, M., Benson, C., Strathdee, S., & Schooley, R. (2020). Lessons learned from the first 10 consecutive cases of intravenous bacteriophage therapy to treat multidrug-resistant bacterial infections at a single center in the United States. Open Forum Infectious Diseases, 7(9). https://doi.org/10.1093/OFID/OFAA389,

Becka, S., Zeiser, E., LiPuma, J., & Papp-Wallace, K. (2021). Activity of imipenem-relebactam against multidrug- And extensively drug-resistant Burkholderia cepacia complex and Burkholderia gladioli. Antimicrobial Agents and Chemotherapy, 65(11). https://doi.org/10.1128/AAC.01332-21,

Belay, W., Getachew, M., Tegegne, B., Teffera, Z., Dagne, A., Zeleke, T., Abebe, R., Gedif, A., Fenta, A., Yirdaw, G., Tilahun, A., & Aschale, Y. (2024). Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Frontiers in Pharmacology, 15, 1444–14781. https://doi.org/10.3389/FPHAR.2024.1444781/XML/NLM

Camacho, L. (2023). Bacterial resistance, a current crisis. Revista Espanola de Salud Publica, 97(1), 1–10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541255/

Causse, M., Ruiz, P., Gutierrez, J., Vaquero, M., & Casal, M. (2015). New AnyplexTM II MTB/MDR/XDR kit for detection of resistance mutations in M. tuberculosis cultures. International Journal of Tuberculosis and Lung Disease, 19(12), 1542–1546. https://doi.org/10.5588/IJTLD.15.0235,

Chang, R. Y. K., Das, T., Manos, J., Kutter, E., Morales, S., & Chan, H. K. (2019). Bacteriophage PEV20 and Ciprofloxacin Combination Treatment Enhances Removal of Pseudomonas aeruginosa Biofilm Isolated from Cystic Fibrosis and Wound Patients. AAPS Journal, 21(3), 1–8. https://doi.org/10.1208/S12248-019-0315-0/FIGURES/5

Chegini, Z., Khoshbayan, A., Taati, M., Farahani, I., Jazireian, P., & Shariati, A. (2020). Bacteriophage therapy against Pseudomonas aeruginosa biofilms: A review. Annals of Clinical Microbiology and Antimicrobials, 19(1). https://doi.org/10.1186/S12941-020-00389-5,

Chen, T., Wang, Y., Chi, X., Xiong, L., Lu, P., Wang, X., Chen, Y., Luo, Q., Shen, P., & Xiao, Y. (2024). Genetic, virulence, and antimicrobial resistance characteristics associated with distinct morphotypes in ST11 carbapenem-resistant Klebsiella pneumoniae. Virulence, 15(1). https://doi.org/10.1080/21505594.2024.2349768,

Chinemerem Nwobodo, D., Ugwu, M. C., Oliseloke Anie, C., Al-Ouqaili, M. T. S., Chinedu Ikem, J., Victor Chigozie, U., & Saki, M. (2022). Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. Journal of clinical laboratory analysis, 36(9). https://doi.org/10.1002/JCLA.24655

Cocorullo, M., Stelitano, G., & Chiarelli, L. R. (2024). Phage Therapy: An Alternative Approach to Combating Multidrug-Resistant Bacterial Infections in Cystic Fibrosis. International journal of molecular sciences, 25(15). https://doi.org/10.3390/IJMS25158321

Damian, C., Ursu, R., & Smaranda, L. (2021). Bacteriophages-Versatile Tools of The Past and The Future. Am J Biomed Sci & Res, 13(3), 2021–2034. https://doi.org/10.34297/AJBSR.2021.13.001870

Dedrick, R., Guerrero, C., Garlena, R., Russell, D., Ford, K., Harris, K., Gilmour, K., Soothill, J., Jacobs, D., Schooley, R., Hatfull, G., & Spencer, H. (2019). Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nature Medicine, 25(5), 730–733. https://doi.org/10.1038/S41591-019-0437-Z,

Denk-Lobnig, M., & Wood, K. B. (2023). Antibiotic resistance in bacterial communities. Current opinion in microbiology, 74. https://doi.org/10.1016/J.MIB.2023.102306

Ding, D., Wang, B., Zhang, X., Zhang, J., Zhang, H., Liu, X., Gao, Z., & Yu, Z. (2023). The spread of antibiotic resistance to humans and potential protection strategies. Ecotoxicology and environmental safety, 254. https://doi.org/10.1016/J.ECOENV.2023.114734

Egorov, A., Ulyashova, M., & Rubtsova, M. (2018). Bacterial Enzymes and Antibiotic Resistance. Acta Naturae, 10(4), 33. https://doi.org/10.32607/20758251-2018-10-4-33-48

Eisenreich, W., Rudel, T., Heesemann, J., & Goebel, W. (2022). Link Between Antibiotic Persistence and Antibiotic Resistance in Bacterial Pathogens. Frontiers in cellular and infection microbiology, 12. https://doi.org/10.3389/FCIMB.2022.900848

Elois, M., Silva, R., Pilati, G., Rodríguez, D., & Fongaro, G. (2023). Bacteriophages as Biotechnological Tools. Viruses, 15(2), 349. https://doi.org/10.3390/V15020349

Erez, Z., Steinberger-Levy, I., Shamir, M., Doron, S., Stokar-Avihail, A., Peleg, Y., Melamed, S., Leavitt, A., Savidor, A., Albeck, S., Amitai, G., & Sorek, R. (2017). Communication between viruses guides lysis-lysogeny decisions. Nature, 541(7638), 488–493. https://doi.org/10.1038/NATURE21049,

Escolà, L., Arcos, I., & Almirante, B. (2020). New antibiotics for the treatment of infections by multidrug-resistant microorganisms. Medicina clinica, 154(9), 351–357. https://doi.org/10.1016/J.MEDCLI.2019.11.002

Furfaro, L., Payne, M., & Chang, B. (2018). Bacteriophage Therapy: Clinical Trials and Regulatory Hurdles. Frontiers in Cellular and Infection Microbiology, 8. https://doi.org/10.3389/FCIMB.2018.00376/PDF

Gauba, A., & Rahman, K. (2023). Evaluation of Antibiotic Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics, 12(11). https://doi.org/10.3390/ANTIBIOTICS12111590,

Gaurav, A., Bakht, P., Saini, M., Pandey, S., & Pathania, R. (2023). Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors. Microbiology, 169(5), 001333. https://doi.org/10.1099/MIC.0.001333

Ge, H., Wang, Y., & Zhao, X. (2022). Research on the drug resistance mechanism of foodborne pathogens. Microbial Pathogenesis, 162. https://doi.org/10.1016/j.micpath.2021.105306

Gopikrishnan, M., & George Priya Doss, C. (2023). Molecular docking and dynamic approach to screen the drug candidate against the Imipenem-resistant CarO porin in Acinetobacter baumannii. Microbial Pathogenesis, 177. https://doi.org/10.1016/J.MICPATH.2023.106049,

Grishin, A., Karyagina, A., Vasina, D., Vasina, I., Gushchin, V., & Lunin, V. (2020). Resistance to peptidoglycan-degrading enzymes. Critical reviews in microbiology, 46(6), 703–726. https://doi.org/10.1080/1040841X.2020.1825333

Ho, T., Nauta, K., Luhmann, E., Radoshevich, L., & Ellermeier, C. (2022). Identification of the Extracytoplasmic Function σ Factor σ P Regulon in Bacillus thuringiensis. mSphere, 7(1). https://doi.org/10.1128/MSPHERE.00967-21,

Holguín, A. V., Rangel, G., Clavijo, V., Prada, C., Mantilla, M., Gomez, M. C., Kutter, E., Taylor, C., Fineran, P. C., Barrios, A. F. G., & Vives, M. J. (2015). Phage ΦPan70, a Putative Temperate Phage, Controls Pseudomonas aeruginosa in Planktonic, Biofilm and Burn Mouse Model Assays. Viruses 2015, Vol. 7, Pages 4602-4623, 7(8), 4602–4623. https://doi.org/10.3390/V7082835

Huemer, M., Mairpady Shambat, S., Brugger, S., & Zinkernagel, A. (2020). Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO reports, 21(12). https://doi.org/10.15252/EMBR.202051034

Jansen, M., Wahida, A., Latz, S., Krüttgen, A., Häfner, H., Buhl, E. M., Ritter, K., & Horz, H. P. (2018). Enhanced antibacterial effect of the novel T4-like bacteriophage KARL-1 in combination with antibiotics against multi-drug resistant Acinetobacter baumannii. Scientific Reports 2018 8:1, 8(1), 1–12. https://doi.org/10.1038/s41598-018-32344-y

Jaramillo, L., Tarazona, D., Levano, K., Galarza, M., Cáceres, O., Becker, M., & Guio, H. (2018). A rapid identification technique for drug-resistant Mycobacterium tuberculosis isolates using mismatch specific cleavage enzyme. Bioinformation, 14(7), 404–407. https://doi.org/10.6026/97320630014404

Kon, K., & Mahendra, R. (2016). Antibiotic Resistance Mechanisms and New Antimicrobial Approaches. En Antibiotic Resistance: Mechanisms and New Antimicrobial Approaches (1a ed.). Elsevier. https://doi.org/10.1016/B978-0-12-803642-6.00018-6

Law, N., Logan, C., Yung, G., Furr, C., Lehman, S. M., Morales, S., Rosas, F., Gaidamaka, A., Bilinsky, I., Grint, P., Schooley, R., & Aslam, S. (2019). Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection, 47(4), 665–668. https://doi.org/10.1007/S15010-019-01319-0,

Lenneman, B., Fernbach, J., Loessner, M., Lu, T., & Kilcher, S. (2021). Enhancing phage therapy through synthetic biology and genome engineering. Current Opinion in Biotechnology, 68, 151–159. https://doi.org/10.1016/j.copbio.2020.11.003

Liang, S., Qi, Y., Yu, H., Sun, W., Raza, S., Alkhorayef, N., Alkhalil, S., Salama, E., & Zhang, L. (2023). Bacteriophage Therapy as an Application for Bacterial Infection in China. Antibiotics (Basel, Switzerland), 12(2). https://doi.org/10.3390/ANTIBIOTICS12020417

Liu, Y., Li, R., Xiao, X., & Wang, Z. (2018). Molecules that Inhibit Bacterial Resistance Enzymes. Molecules 2019, Vol. 24, Page 43, 24(1), 43. https://doi.org/10.3390/MOLECULES24010043

Lorusso, A., Carrara, J., Barroso, C., Tuon, F., & Faoro, H. (2022). Role of Efflux Pumps on Antimicrobial Resistance in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 23(24). https://doi.org/10.3390/IJMS232415779,

Modi, S., Gaur, S., Sengupta, M., & Singh, M. (2023). Mechanistic insights into nanoparticle surface-bacterial membrane interactions in overcoming antibiotic resistance. Frontiers in microbiology, 14. https://doi.org/10.3389/FMICB.2023.1135579

Moghadam, M. T., Khoshbayan, A., Chegini, Z., Farahani, I., & Shariati, A. (2020). Bacteriophages, a New Therapeutic Solution for Inhibiting Multidrug-Resistant Bacteria Causing Wound Infection: Lesson from Animal Models and Clinical Trials. Drug Design, Development and Therapy, 14, 1867. https://doi.org/10.2147/DDDT.S251171

Müller, C., Reuter, S., Wille, J., Xanthopoulou, K., Stefanik, D., Grundmann, H., Higgins, P., & Seifert, H. (2023). A global view on carbapenem-resistant Acinetobacter baumannii. mBio, 14(6). https://doi.org/10.1128/MBIO.02260-23,

Murray, P., Rosenthal, K., & Pfaller, M. (2017). Microbiologia médica. En Elsevier. Elsevier.

Nick, J., Dedrick, R., Gray, A., Vladar, E., Smith, B., Freeman, K., Malcolm, K., Epperson, L., Hasan, N., Hendrix, J., Callahan, K., Walton, K., Vestal, B., Wheeler, E., Rysavy, N., Poch, K., Caceres, S., Lovell, V., Hisert, K., … Davidson, R. (2022). Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell, 185(11), 1860-1874.e12. https://doi.org/10.1016/J.CELL.2022.04.024

North, O. I., & Brown, E. D. (2021). Phage-antibiotic combinations: a promising approach to constrain resistance evolution in bacteria. Annals of the New York Academy of Sciences, 1496(1), 23–34. https://doi.org/10.1111/NYAS.14533

Obando, L., Rodríguez, A., & Castro, J. (2021). An in depth analysis of bacteriophage therapy in the medical field: advantages, limitations and future challenges. Journal of Anesthesia & Critical Care: Open Access, Volume 13(Issue 4), 145–148. https://doi.org/10.15406/JACCOA.2021.13.00486

Olawade, D., Fapohunda, O., Egbon, E., Ebiesuwa, O., Usman, S., Faronbi, A., & Fidelis, S. (2024). Phage therapy: A targeted approach to overcoming antibiotic resistance. Microbial Pathogenesis, 197, 107088. https://doi.org/10.1016/J.MICPATH.2024.107088

Perdigão Neto, L. V., Oliveira, M. S., Orsi, T. D. A., Prado, G. V. B. do, Martins, R. C. R., Leite, G. C., Marchi, A. P., Lira, E. S. A. de, Côrtes, M. F., Espinoza, E. P. S., Carrilho, C. M. D. de M., Boszczowski, Í., Guimarães, T., Costa, S. F., & Levin, A. S. (2020). Alternative drugs against multiresistant Gram-negative bacteria. Journal of global antimicrobial resistance, 23, 33–37. https://doi.org/10.1016/J.JGAR.2020.07.025

Petrov, G., Dymova, M., & Richter, V. (2022). Bacteriophage-Mediated Cancer Gene Therapy. International journal of molecular sciences, 23(22). https://doi.org/10.3390/IJMS232214245

Rezk, N., Abdelsattar, A. S., Elzoghby, D., Agwa, M. M., Abdelmoteleb, M., Aly, R. G., Fayez, M. S., Essam, K., Zaki, B. M., & El-Shibiny, A. (2022). Bacteriophage as a potential therapy to control antibiotic-resistant Pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model. Journal of Genetic Engineering and Biotechnology, 20(1), 1–16. https://doi.org/10.1186/S43141-022-00409-1/METRICS

Rizwan, M., Mehmood, T., Munir, D., Sajid, M., Tahir, U., Idrees, H., & Chishti, A. (2024). Antibiotic Resistance in Escherichia coli: A Global Challenge for Human and Veterinary Health. International Journal of Veterinary Science, 1(10), 17–30. https://doi.org/10.47278/book.CAM/2024.281

Ruiz, D., Quirós, M., & Cuevas, O. (2021). Los antibióticos y su impacto en la sociedad Antibiotics and their impact on society. MediSur, 19(3), 1–15. http://www.medisur.sld.cu/index.php/medisur/article/view/4898

Schooley, R., Biswas, B., Gill, J., Hernandez, A., Lancaster, J., Lessor, L., Barr, J., Reed, S., Rohwer, F., Benler, S., Segall, A., Taplitz, R., Smith, D., Kerr, K., Kumaraswamy, M., Nizet, V., Lin, L., McCauley, M., Strathdee, S., … Hamilton, T. (2017). Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrobial Agents and Chemotherapy, 61(10). https://doi.org/10.1128/AAC.00954-17,

Shamsuzzaman, M., Kim, S., & Kim, J. (2024). Bacteriophage as a novel therapeutic approach for killing multidrug-resistant Escherichia coli ST131 clone. Frontiers in Microbiology, 15, 1455710. https://doi.org/10.3389/FMICB.2024.1455710/BIBTEX

Sisakhtpour, B., Mirzaei, A., Karbasizadeh, V., Hosseini, N., Shabani, M., & Moghim, S. (2022). The characteristic and potential therapeutic effect of isolated multidrug-resistant Acinetobacter baumannii lytic phage. Annals of Clinical Microbiology and Antimicrobials, 21(1), 1–11. https://doi.org/10.1186/S12941-022-00492-9/FIGURES/12

Somprasong, N., Yi, J., Hall, C., Webb, J., Sahl, J., Wagner, D., Keim, P., Currie, B., & Schweizer, H. (2021). Conservation of resistance-nodulation-cell division efflux pump-mediated antibiotic resistance in burkholderia cepacia complex and burkholderia pseudomallei complex species. Antimicrobial Agents and Chemotherapy, 65(9). https://doi.org/10.1128/AAC.00920-21,

Strathdee, S., Hatfull, G., Mutalik, V., & Schooley, R. (2023). Phage therapy: From biological mechanisms to future directions. Cell, 186(1), 17–31. https://doi.org/10.1016/J.CELL.2022.11.017

Taha, O. A., Connerton, P. L., Connerton, I. F., & El-Shibiny, A. (2018). Bacteriophage ZCKP1: A potential treatment for Klebsiella pneumoniae isolated from diabetic foot patients. Frontiers in Microbiology, 9(SEP), 317049. https://doi.org/10.3389/FMICB.2018.02127/BIBTEX

Treviño, N. P., & Molina, N. B. (2022). Antibióticos: mecanismos de acción y resistencia bacteriana. http://sedici.unlp.edu.ar/handle/10915/136280

Urban, R., Marek, A., Stępień, D., Wieczorek, K., Dec, M., Nowaczek, A., & Osek, J. (2022). Antibiotic Resistance in Bacteria-A Review. Antibiotics (Basel, Switzerland), 11(8). https://doi.org/10.3390/ANTIBIOTICS11081079

Van Duin, D., & Paterson, D. L. (2020). Multidrug-Resistant Bacteria in the Community: An Update. Infectious disease clinics of North America, 34(4), 709–722. https://doi.org/10.1016/J.IDC.2020.08.002

Wang, X., Yu, D., & Chen, L. (2023). Antimicrobial resistance and mechanisms of epigenetic regulation. Frontiers in cellular and infection microbiology, 13. https://doi.org/10.3389/FCIMB.2023.1199646

Wannigama, D., Watanabe, S., Miyanaga, K., Kiga, K., Sasahara, T., Aiba, Y., Tan, X., Veeranarayanan, S., Thitiananpakorn, K., Nguyen, H., & Wannigama, D. (2024). Comprehensive Review on Phage Therapy and Phage-Based Drug Development. https://doi.org/10.20944/PREPRINTS202408.1879.V1

Yu, H., Han, X., & Quiñones, P. (2021). La humanidad enfrenta un desastre: la resistencia antimicrobiana. Revista Habanera de Ciencias Médicas, 20(3), 1–9.

Yu, K., Wang, H., Cao, Z., Gai, Y., Liu, M., Li, G., Lu, L., & Luan, X. (2022). Antimicrobial resistance analysis and whole-genome sequencing of Salmonella enterica serovar Indiana isolate from ducks. Journal of Global Antimicrobial Resistance, 28, 78–83. https://doi.org/10.1016/j.jgar.2021.12.013

Descargas

Publicado

2025-05-16

Cómo citar

Mayorga-Morales, D. C., & De-la-Torre-Fiallos, A. V. (2025). Importancia de la terapia de bacteriófagos en infecciones bacterianas multirresistentes. MQRInvestigar, 9(2), e579. https://doi.org/10.56048/MQR20225.9.2.2025.e579