Evaluación del perfil lipídico y niveles de glucosa en perros obesos

Autores/as

DOI:

https://doi.org/10.56048/MQR20225.8.3.2024.1-19

Palabras clave:

Obesidad;Colesterol; Triglicéridos; Glucosa; Perros

Resumen

El perfil lipídico y los niveles de glucosa son biomarcadores fundamentales para evaluar las alteraciones metabólicas en perros obesos. Este estudio analiza el perfil lipídico y la glucosa en 70 perros mestizos obesos, clasificados según la escala de la WSAVA, con el objetivo de comprender las relaciones entre estos parámetros.

 

Para lo cual se determinaron los niveles de colesterol, triglicéridos y glucosa mediante métodos colorimétricos. Se evaluaron las correlaciones entre estas variables utilizando el coeficiente de correlación de Pearson (r) y el valor p.

 

Encontrándose una correlación positiva moderada y significativa (r = 0,323; p = 0,006) entre glucosa y triglicéridos, lo que sugiere que el aumento de la glucosa se asocia con niveles elevados de triglicéridos. Esto podría indicar un mecanismo metabólico común relacionado con la resistencia a la insulina en perros obesos.

 

En contraste, no se observó una correlación significativa entre glucosa y colesterol (r = 0,112; p = 0,357), indicando que estos parámetros no están interrelacionados de manera significativa en esta muestra. La correlación entre colesterol y triglicéridos fue muy débil y no significativa (r = 0,058; p = 0,635), sugiriendo una falta de relación lineal entre estos parámetros. Esta disparidad podría deberse a diferencias en el metabolismo de lípidos entre perros y humanos.

 

Este estudio resalta la importancia de monitorear la glucosa y los triglicéridos en perros obesos para detectar disfunciones metabólicas, a pesar de que la relación entre el colesterol y estos parámetros no fue significativa. Estas evaluaciones son cruciales para el diagnóstico y manejo de la obesidad canina.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

    Cited

    DOI: 10.56048DOI

Biografía del autor/a

Edy Paul Castillo-Hidalgo, UNIVERSIDAD DEL ZULIA

Candidato a Doctor en Ciencias Veterinarias

Fanny Gallardo-Arrieta, UNIVERSIDAD DEL ZULIA

Docente Tutor del área de Clínica y Cirugía

Matilde Lorena Zapata-Saavedra, UNIVERSIDAD DEL ZULIA

Candidato a Doctor en Ciencias Veterinarias

Citas

Astor, D. E., Hoelzler, M. G., Harman, R., & Bastian, R. P. (2013). Patient factors influencing the concentration of stromal vascular fraction (SVF) for adipose-derived stromal cell (ASC) therapy in dogs. Revue Canadienne de Recherche Veterinaire [Canadian Journal of Veterinary Research], 77(3), 177–182.

Barriga, C. V., & Fontúrbel, F. E. (2010). Obesity in dogs and cats: a metabolic and endocrine disorder. The Veterinary Clinics of North America. Small Animal Practice, 40(2), 221–239. https://doi.org/10.1016/j.cvsm.2009.10.009

Brunetto, M. A., Sá, F. C., Nogueira, S. P., Gomes, M. de O. S., Pinarel, A. G., Jeremias, J. T., de Paula, F. J. A., & Carciofi, A. C. (2011). The intravenous glucose tolerance and postprandial glucose tests may present different responses in the evaluation of obese dogs. The British Journal of Nutrition, 106 Suppl 1(S1), S194-7. https://doi.org/10.1017/S0007114511000870

Cavalcante, C. Z., Michelotto, P. V., Jr, Capriglione, L. G. A., Roncoski, A. T., & Nishiyama, A. (2023). Weight loss modifies lipid peroxidation and symmetric dimethylarginine levels in obese dogs. Revue Canadienne de Recherche Veterinaire [Canadian Journal of Veterinary Research], 87(1), 29–34.

Cook, A. K. (2012). Monitoring methods for dogs and cats with diabetes mellitus. Journal of Diabetes Science and Technology, 6(3), 491–495. https://doi.org/10.1177/193229681200600302

Cortese, L., Terrazzano, G., & Pelagalli, A. (2019). Leptin and immunological profile in obesity and its associated diseases in dogs. International Journal of Molecular Sciences, 20(10), 2392. https://doi.org/10.3390/ijms20102392

Costa-Santos, K., Damasceno, K., Portela, R. D., Santos, F. L., Araújo, G. C., Martins-Filho, E. F., Silva, L. P., Barral, T. D., Santos, S. A., & Estrela-Lima, A. (2019). Lipid and metabolic profiles in female dogs with mammary carcinoma receiving dietary fish oil supplementation. BMC Veterinary Research, 15(1), 401. https://doi.org/10.1186/s12917-019-2151-y

de Marchi, P. N., Machado, L. H. de A., Holsback, L., Calesso, J. R., Fagnani, R., Zacarias Junior, A., & Cardoso, M. J. L. (2020). Metabolic profile and adipokine levels in overweight and obese dogs. Turkish Journal of Veterinary and Animal Sciences, 44(5), 1093–1099. https://doi.org/10.3906/vet-2004-44

Dos Santos, M. A. B., Vargas, A. M., Rosato, P. N., Andrade, C. G., Martins, C. M., & Petri, G. (2022). Evaluation of three human-use glucometers for blood glucose measurement in dogs. Veterinary Medicine International, 2022, 9112961. https://doi.org/10.1155/2022/9112961

Feitosa, M. L., Zanini, S. F., Sousa, D. R. de, Fantuzzi, E., Carraro, T. C. L., Pinto, C. A., Bertonceli, R. M., & Colnago, G. L. (2016). Glucose and lipid profile of obese dogs fed with different starchy sources. Ciencia rural, 46(12), 2189–2194. https://doi.org/10.1590/0103-8478cr20151327

Fernandes, C. G., Almeida, B. F. M. de, Floriano, B. P., & Romão, F. G. (2022). Evaluation of the occurrence of metabolic syndrome in obese dogs and the role of caloric restriction diet as an adjuvant therapy. Acta Veterinaria Brasilica, 16(4), 358–364. https://doi.org/10.21708/avb.2022.16.4.10960

Ferreira, P. A., Mueller, E. N., Fischer, E. C., Tillmann, M. T., Peres, W., & Nobre, M. D. O. (2013). Glicemia do sangue capilar e venoso de cães saudáveis: mensuração por método eletroquímico versus enzimático laboratorial. Semina. Ciencias agrarias, 34(3). https://doi.org/10.5433/1679-0359.2013v34n3p1287

Ford, E. S., Li, C., & Sattar, N. (2008). Metabolic syndrome and incident diabetes. Diabetes Care, 31(9), 1898–1904. https://doi.org/10.2337/dc08-0423

German, A. J., Hervera, M., Hunter, L., Holden, S. L., Morris, P. J., Biourge, V., & Trayhurn, P. (2009). Improvement in insulin resistance and reduction in plasma inflammatory adipokines after weight loss in obese dogs. Domestic Animal Endocrinology, 37(4), 214–226. https://doi.org/10.1016/j.domaniend.2009.07.001

German, Alexander J., Ryan, V. H., German, A. C., Wood, I. S., & Trayhurn, P. (2010). Obesity, its associated disorders and the role of inflammatory adipokines in companion animals. Veterinary Journal (London, England: 1997), 185(1), 4–9. https://doi.org/10.1016/j.tvjl.2010.04.004

Howard, L. A., Lidbury, J. A., Jeffery, N., Washburn, S. E., & Patterson, C. A. (2021). Evaluation of a flash glucose monitoring system in nondiabetic dogs with rapidly changing blood glucose concentrations. Journal of Veterinary Internal Medicine, 35(6), 2628–2635. https://doi.org/10.1111/jvim.16273

Ismail-Hamdi, S., Romdane, M. N., & Ben Romdhane, S. (2021). Comparison of a human portable blood glucose meter and automated chemistry analyser for measurement of blood glucose concentrations in healthy dogs. Veterinary Medicine and Science, 7(6), 2185–2190. https://doi.org/10.1002/vms3.594

Korkots, D. A., Vatnikov, Y. A., Rudenko, A. A., & Rudenko, P. A. (2021). Pathophysiological characteristics of the development of arterial hypertension in Yorkshire Terriers with alimentary obesity. Agrarian science, 9, 30–34. https://doi.org/10.32634/0869-8155-2021-352-9-30-34

Kraft, W., Weskamp, M., & Dietl, A. (1994). Serum cholesterol in the dog. Tierarztliche Praxis, 22(4), 392–397.

Laflamme, D. P. (2006). Understanding and managing obesity in dogs and cats. The Veterinary Clinics of North America. Small Animal Practice, 36(6), 1283–1295. https://doi.org/10.1016/j.cvsm.2006.08.005

Lee, E., Kang, S., Shim, J., Jeong, D., Jeong, Y., Ahn, J., & Seo, K. (2022). Quantification of tear glucose levels and their correlation with blood glucose levels in dogs. Veterinary Medicine and Science, 8(4), 1816–1824. https://doi.org/10.1002/vms3.788

Leeper, H., Viall, A., Ruaux, C., & Bracha, S. (2017). Preliminary evaluation of serum total cholesterol concentrations in dogs with osteosarcoma: Cholesterol in dogs with osteosarcoma. The Journal of Small Animal Practice, 58(10), 562–569. https://doi.org/10.1111/jsap.12702

Logvinova, V. V., & Kravtsova, M. V. (2022). Pathomorphological changes in the liver and internal organs in obese cats. Scientific Messenger of LNU of Veterinary Medicine and Biotechnology, 24(108), 101–106. https://doi.org/10.32718/nvlvet10815

Marchi, P. H., Vendramini, T. H. A., Perini, M. P., Zafalon, R. V. A., Amaral, A. R., Ochamotto, V. A., Da Silveira, J. C., Dagli, M. L. Z., & Brunetto, M. A. (2022). Obesity, inflammation, and cancer in dogs: Review and perspectives. Frontiers in Veterinary Science, 9, 1004122. https://doi.org/10.3389/fvets.2022.1004122

Miasaki, N. T., Cruz, M. F. R., Marquez, E. de S., Wenceslau, T. A., Zacarias Junior, A., Porto, E. de P., Oliveira, V. P. de, Sarmento, A. L., & Silva, N. B. (2020). Comparative evaluation of the glucose level in dogs and cats obtained by portable glucometer and colorimetric automated method. Research, Society and Development, 9(11), e4069119583. https://doi.org/10.33448/rsd-v9i11.9583

Mori, N., Lee, P., Kondo, K., Kido, T., Saito, T., & Arai, T. (2011). Potential use of cholesterol lipoprotein profile to confirm obesity status in dogs. Veterinary Research Communications, 35(4), 223–235. https://doi.org/10.1007/s11259-011-9466-x

Motomura, M., Shimokawa, F., Kobayashi, T., Yamashita, Y., Mizoguchi, I., Sato, Y., Murakami, Y., Shimizu, I., Matsui, T., Murakami, M., & Funaba, M. (2019). Relationships between expression levels of genes related to adipogenesis and adipocyte function in dogs. Molecular Biology Reports, 46(5), 4771–4777. https://doi.org/10.1007/s11033-019-04923-3

Partington, C., Hodgkiss-Geere, H., Woods, G. R. T., Dukes-McEwan, J., Flanagan, J., Biourge, V., & German, A. J. (2022). The effect of obesity and subsequent weight reduction on cardiac structure and function in dogs. BMC Veterinary Research, 18(1), 351. https://doi.org/10.1186/s12917-022-03449-4

Porsani, M. Y. H., Teixeira, F. A., Amaral, A. R., Pedrinelli, V., Vasques, V., de Oliveira, A. G., Vendramini, T. H. A., & Brunetto, M. A. (2020). Factors associated with failure of dog’s weight loss programmes. Veterinary Medicine and Science, 6(3), 299–305. https://doi.org/10.1002/vms3.229

Qu, W., Chen, Z., Hu, X., Zou, T., Huang, Y., Zhang, Y., Hu, Y., Tian, S., Wan, J., Liao, R., Bai, L., Xue, J., Ding, Y., Hu, M., Zhang, X.-J., Zhang, X., Zhao, J., Cheng, X., She, Z.-G., & Li, H. (2022). Profound perturbation in the metabolome of a canine obesity and metabolic disorder model. Frontiers in Endocrinology, 13, 849060. https://doi.org/10.3389/fendo.2022.849060

Rankovic, A., Adolphe, J. L., & Verbrugghe, A. (2019). Role of carbohydrates in the health of dogs. Journal of the American Veterinary Medical Association, 255(5), 546–554. https://doi.org/10.2460/javma.255.5.546

Singh, Ravdeep, Sher-e-Kashmir, R.S. Pura, Jammu, J., & K. (2020). Quality of life in obese dogs. Indian Journal of Pure & Applied Biosciences, 8(2), 195–200. https://doi.org/10.18782/2582-2845.7655

Stachowiak, M., Szczerbal, I., & Switonski, M. (2016). Genetics of adiposity in large animal models for human obesity-studies on pigs and dogs. Progress in Molecular Biology and Translational Science, 140, 233–270. https://doi.org/10.1016/bs.pmbts.2016.01.001

Usui, S., Mizoguchi, Y., Yasuda, H., Arai, N., & Koketsu, Y. (2014). Dog age and breeds associated with high plasma cholesterol and triglyceride concentrations. The Journal of Veterinary Medical Science, 76(2), 269–272. https://doi.org/10.1292/jvms.13-0369

Van Herck, M., Vonghia, L., & Francque, S. (2017). Animal models of nonalcoholic fatty liver disease—A starter’s guide. Nutrients, 9(10), 1072. https://doi.org/10.3390/nu9101072

Vendramini, T. H. A., Macedo, H. T., Zafalon, R. V. A., Macegoza, M. V., Pedrinelli, V., Risolia, L. W., Ocampos, F. M. M., Jeremias, J. T., Pontieri, C. F. F., Ferriolli, E., Colnago, L. A., & Brunetto, M. A. (2021). Serum metabolomics analysis reveals that weight loss in obese dog’s results in a similar metabolic profile to dogs in ideal body condition. Metabolomics: Official Journal of the Metabolomic Society, 17(3), 27. https://doi.org/10.1007/s11306-020-01753-4

Vigh, Z., Johnson, P. A., Weng, H.-Y., Thomovsky, E. J., & Brooks, A. C. (2023). Interstitial glucose monitoring has acceptable clinical accuracy in juvenile dogs. Journal of the American Veterinary Medical Association, 261(10), 1475–1408. https://doi.org/10.2460/javma.23.02.0103

Wolfenden, G., James, F. E., Hung, L. H. T., Bruce, M., & Thompson, M. (2022). Comparative accuracy of two veterinary-calibrated point-of-care glucometres for measurement of blood glucose concentration in dogs. The Journal of Small Animal Practice, 63(7), 512–519. https://doi.org/10.1111/jsap.13491

Zeugswetter, F. K., & Schwendenwein, I. (2020). Basal glucose excretion in dogs: The impact of feeding, obesity, sex, and age. Veterinary Clinical Pathology, 49(3), 428–435. https://doi.org/10.1111/vcp.12899

(S/f). Redalyc.org. Recuperado el 19 de junio de 2024, de https://www.redalyc.org/pdf/959/95918054004.pdf

Descargas

Publicado

2024-06-24

Cómo citar

Castillo-Hidalgo, E. P., Gallardo-Arrieta, F., & Zapata-Saavedra, M. L. (2024). Evaluación del perfil lipídico y niveles de glucosa en perros obesos. MQRInvestigar, 8(3), 1–19. https://doi.org/10.56048/MQR20225.8.3.2024.1-19

Artículos más leídos del mismo autor/a

1 2 > >>