Factors that affect the availability of a thermoelectric plant

Factores que inciden en la disponibilidad de una central termoeléctrica

Autores:

Ing. Vélez-Anchundia, Edison Stalin
Universidad Técnica Manabí
Facultad de posgrado, maestría en mantenimiento industrial
Maestrante
Portoviejo – Ecuador

evelez2865@utm.edu.ec

https://orcid.org/0009-0006-1019-2546

Dr. Arteaga-Linzan, Ángel Rafael, Ph.D.
Universidad Técnica Manabí
Facultad de Ciencias Matemáticas, Físicas y Químicas, Departamento de Mecánica
Docente Tutor
Portoviejo – Ecuador

angel.arteaga@utm.edu.ec

https://orcid.org/0000-0002-3589-5866

Ing. Velepucha-Sánchez, Jorge, Msc.
Universidad Técnica Manabí
Facultad de Ciencias Matemáticas, Físicas y Químicas, Departamento de Mecánica
Docente Cotutor
Portoviejo – Ecuador

jorge.velepucha@utm.edu.ec

https://orcid.org/0000-0002-3600-5896

Fechas de recepción: 10-DIC-2023 aceptación: 19-ENE-2024 publicación: 15-MAR-2024

https://orcid.org/0000-0002-8695-5005 http://mqrinvestigar.com/

Vol.8 No.1 (2024): Journal Scientific Investigar ISSN: 2588–0659 https://doi.org/10.56048/MQR20225.8.1.2024.450-469

Resumen

La generación de energía eléctrica representa uno de los insumos más importantes en el desarrollo de la sociedad, de tal manera que esta debe satisfacer las necesidades de todos los sectores de este globalizado mundo moderno. El presente trabajo se llevó a cabo con el análisis de los datos correspondientes al año 2022 en una central termoeléctrica ubicada en la región costera de la Republica del Ecuador, la misma que cuenta con grupos electrógenos GM con capacidad de 2.5MW en cada unidad. El objetivo de este trabajo consiste en la determinación de los factores que afectan a la disponibilidad de la central termoeléctrica el cual, mediante la realización de evaluaciones al personal técnico, equipos y entorno productivo, se podrá establecer la forma de afectación de cada uno de estos factores con el afán de realizar recomendaciones que permitan aumentar el nivel de disponibilidad actual. Para dar cumplimiento al objetivo se procedió a realizar las siguientes actividades: evaluación de conocimientos y experiencia del personal técnico, jerarquización de los equipos mediante el uso de la matriz de criticidad cualitativa, aplicación de formato AMFE y evaluación de los niveles de disponibilidad mediante indicadores puntuales. En el Ecuador es de suma importancia el contar con disponibilidad de generación termoeléctrica para garantizar la continuidad del servicio eléctrico en las épocas de estiaje y ante situaciones emergentes en donde se necesite de generación aislada al sistema nacional interconectado.

Palabras clave: jerarquización; central termoeléctrica; disponibilidad; equipo crítico

Vol.8 No.1 (2024): Journal Scientific Investigar ISSN: 2588–0659 https://doi.org/10.56048/MQR20225.8.1.2024.450-469

Abstract

The generation of electrical energy represents one of the most important inputs in the development of society, such that it must satisfy the needs of all sectors of this modern globalized world. This work was carried out with the analysis of data corresponding to the year 2022 in a thermoelectric plant located in the coastal region of the Republic of Ecuador, which has GM generator sets with a capacity of 2.5MW in each unit. The objective of this work consists of determining the factors that affect the availability of the thermoelectric plant which, by carrying out evaluations of the technical personnel, equipment and productive environment, the way in which each of these factors is affected can be established factors with the aim of making recommendations that allow increasing the current level of availability. To fulfill the objective, the following activities were carried out: evaluation of the knowledge and experience of the technical personnel, prioritization of the equipment through the use of the qualitative criticality matrix, application of the FMEA format and evaluation of the availability levels using specific indicators. In Ecuador, it is of utmost importance to have availability of thermoelectric generation to guarantee the continuity of the electrical service in times of dry season and in emerging situations where isolated generation is needed from the interconnected national system.

Keywords: hierarchy; thermoelectric plant; availability; critical equipment

Introducción

La generación de energía eléctrica debe satisfacer los requerimientos de todos los sectores productivos y el confort familiar; según datos de la comisión Económica para América Latina y el Caribe (CEPAL, 2022), se afirma que la población actual ronda los ocho billones de habitantes y que para el año 2037 esta cifra ascendería a los nueve billones, razón por la cual (Guerrero Miranda & Quishpe Gaibor, 2019), manifiestan que para garantizar una disponibilidad continua de energía se deben de construir nuevas centrales de generación que integren estudios del impacto ambiental que abarque desde las fases de construcción hasta el final de su vida útil con miras de preservar el medio ambiente. En este contexto es acertado el decir que el aumento de la demanda de energía eléctrica va de la mano del incremento poblacional acelerado que vivimos en estos tiempos.

A pesar de que existen los tratados internacionales y los esfuerzos en adoptar nuevas alternativas hacia un cambio en la matriz de generación de energía eléctrica a nivel mundial, en los últimos años el uso de los combustibles fósiles para este fin no han disminuido y por el contrario han tenido un incremento muy significativo en el uso; la organización climática sin fines de lucro (EMBER, 2022), en la evaluación al sector eléctrico mundial informa que la demanda de energía eléctrica para el año 2021 fue de 30,236 TWh de la cual el 62% se produjo mediante el uso de combustibles fósiles en todas sus formas, con una participación del 28% de energía generada mediante fuentes renovables y el restante 10% mediante fuentes de energía nuclear.

El Ecuador, además de ser productor petrolero a seguido en la tendencia en cuanto a la producción de energía eléctrica a través del uso de fuentes de energía renovable para abastecer las necesidades del 97% de la población, el comercio, la industria y demás servicios públicos. El centro nacional de control de energía (CENACE, 2020), declara que la energía en todas sus formas se considera parte de los sectores estratégicos que son administrados por el estado ecuatoriano mediante principios de sostenibilidad ambiental, precaución, prevención y eficiencia; en este contexto se declara al CENACE como el operador del sistema nacional interconectado y cuya responsabilidad es de mantener el abastecimiento continuo de energía eléctrica de manera eficiente bajo condiciones de seguridad, calidad y a un costo mínimo de producción.

La generación de energía eléctrica para el sector eléctrico ecuatoriano es realizada por 21 empresas públicas que cuentan con 80 centrales de generación y por 53 empresas privadas que cuentan con 59 centrales de generación; a más de esto, existen tratados bilaterales que establecen el comercio energético entre los países vecinos de Colombia y Perú, (CENACE, 2023). Mediante el informe anual realizado por la Agencia de regulación y control de energía y recursos naturales no renovables (ARCERNNR, 2023), se informa que en el año 2022 el Ecuador alcanzó una producción neta para el consumo de energía eléctrica de 33,008.30

GWh y de la cual se distribuye que el 75.05% - 25,123.93 GWh fue producido por fuentes renovables, el 23.55% - 7,884.37 GWh fue producido por centrales termoeléctricas y el restante 1.39% - 465.83 GWh corresponde a energía importada desde Colombia y Perú.

La producción de energía eléctrica en el Ecuador está marcada ampliamente por generación a partir de fuentes amigables de bajo o nulo impacto al ambiente, en gran medida de centrales hidroeléctricas; con la participación de una matriz eléctrica diversificada se satisface la demanda nacional prácticamente de manera continua. En la tabla 1, se muestra la participación de potencia con la que cuenta el Ecuador en las centrales eléctricas de acuerdo a los diversos tipos de fuentes de energía primaria y la energía producida por cada fuente al año 2022.

Tabla 1Balance nacional de energía eléctrica 2022

				_		Producción e Importaciones							
		Pote	encia Instalad	a en Generac	ión	To	tal	Solo SNI					
	F17	Potencia	Nominal	Potencia	Efectiva	GWh	%	GWh	%				
Energia	Energía Eléctrica		%	MW	%	33.474,13	100,00%	29.328,83	100,00%				
Nacional (Renovab	Nacional (Renovable + No Renovable)		100,00%	8.219,55	100,00%	33.008,30	98,61%	28.863,00	98,41%				
Renovable					65,36%	25.123,93	75,05%		85,60%				
Hidráulica	kal	5.191,30	58,56%	5.151,31	62,67%	24.635,16	73,59%	24.624,39	83,96%				
Eólica	土	53,15	0,60%	49,72	0,60%	60,60	0,18%	57,89	0,20%				
Fotovoltaica	*	28,65	0,32%	27,76	0,34%	38,50	0,12%	33,28	0,11%				
Biomasa	dia contraction	144,30	1,63%	136,40	1,66%	348,08	1,04%	348,08	1,19%				
Biogás		8,32	0,09%	7,20	0,09%	41,59	0,12%	41,59	0,14%				
No Renovable		3.438,65	38,79%	2.847,16	34,64%	7.884,37	23,55%	3.757,77	12,81%				
MCI <	iŽi	2.033,18	22,94%	1.625,11	19,77%	5.366,38	16,03%	1.557,76	5,31%				
Turbogás	AM .	943,85	10,65%	790,55	9,62%	1.021,54	3,05%	703,56	2,40%				
Turbovapor (461,63	5,21%	431,50	5,25%	1.496,46	4,47%	1.496,45	5,10%				
Importación		650,00	100,00%	635,00	100,00%	465,83	1,39%	465,83	1,59%				
Colombia	\$	540,00	83,08%	525,00	82,68%	465,30	1,39%	465,30	1,59%				
Perú	3	110,00	16,92%	110,00	17,32%	0,53	0,00%	0,53	0,00%				

Fuente: (ARCERNNR, 2023)

Sin embargo, en el año 2023 el gobierno ecuatoriano ha declarado en emergencia al sector eléctrico debido a la sequía en los ríos que alimentan a las centrales hidroeléctricas en la zona occidental del país, a la compra de energía termoeléctrica más costosa desde Colombia y a la indisponibilidad de las centrales termoeléctricas por falta de mantenimiento oportuno (Tapia, 2023).

La central termoeléctrica objeto de esta investigación se encuentra ubicada en el perfil costero del Ecuador e inició sus operaciones productivas en los años de 1970s, actualmente cuenta con una potencia disponible de 15 MW conformada por 6 grupos electrógenos con motores General Motors de la serie E-645 que utilizan combustible diésel para su funcionamiento, este tipo de motores son de dos tiempos con una disposición en V de 20 cilindros y funcionan a una velocidad nominal de 900 RPM; la etapa de generación eléctrica se realiza mediante generadores Electro Motive de 3250 KVA a una tensión de 4.2 KV, esta energía producida se evacua por medio de una subestación de tipo convencional aislada al aire de 4.2/13.8 KV hacia una subestación de distribución. Mediante la figura 1, se observan los grupos electrógenos pertenecientes a la bahía de generación 2 de la central termoeléctrica en estudio.

Figura 1Grupos electrógenos General Motors – U4, U5, U6

Fuente: Elaboración propia

Según los análisis de la información asociada a esta investigación, se evidencia que la central en estudio afronta varios inconvenientes en sus equipos y por ende refleja a varias unidades de generación con índices de disponibilidad muy por debajo del rango aceptable ante la agencia reguladora del sector eléctrico, es por aquello que al convocarla a producir se realiza únicamente en casos de emergencia o al existir algún trabajo puntual de mantenimiento en donde se requiere una participación de esta central en forma aislada al sistema nacional interconectado. En la tabla 2, se reflejan los índices calculados para la central en estudio, los

mismos que corresponden al año 2022.

Tabla 2 Informe anual de generación 2022

	Año Informado:	2022		ıu	NIDADES DE	GENERACIO	N	
	DESCRIPCION	UNIDAD	U1	U2	U3	U4	U5	U6
CIA	Potencia Nominal	Mw	2.50	2.50	2.50	2.50	2.50	2.50
POTENCIA	Potencia Efectiva	Mw	1.90	1.90	1.90	1.90	1.90	1.90
	Carga Promedio Reactiva	MVar	0.2	0.2	0.2	0.2	0.2	0.2
DISP BALANCE ENE	Energía Bruta	MwH	1,607.87	2,032.82	1,746.16	1,239.08	1,027.40	1,450.78
CEI	Consumo de Combustible Diesel	gl	127,625.00	161,890.00	139,484.00	97,885.00	80,701.00	114,325.00
M	Rendimiento Combustible Diesel	kwh/gl	12.60	12.56	12.52	12.66	12.73	12.69
BA	Consumo Específico	BTU/Kwh	9,921.90	9,954.79	9,985.08	9,874.75	9,818.64	9,850.28
SPC	Sincronismo Operación Normal	Horas	861.76	1,091.94	950.84	692.72	575.83	767.77
۵	Sincronismo de Prueba	Horas	0.00	0.34	0.00	1.46	0.25	0.00
	Mantenimiento Programado/Preventivo	Horas	121.50	120.50	113.55	123.41	113.91	150.42
	Mantenimiento Programado/Extendido	Horas	0.00	0.00	0.00	0.00	0.00	0.00
	Total Mantenimiento Programado	Horas	121.50	120.50	113.55	123.41	113.91	150.42
AD	Mantenimiento Correctivo/forzado/emerge	Horas	1.15	24.16	628.47	3,561.52	306.76	18.07
NDISPONIBILIDAD	Man. Correctivo/forzado/emergente extend	Horas	0.00	0.00	0.00	65.87	1,495.00	0.00
E I	Total Mantenimiento Correctivo	Horas	1.15	24.16	628.47	3,627.39	1,801.76	18.07
Į O	Indisponibilidad forzada por falla arranqu	Horas	0.00	0.33	0.35	7.00	0.00	0.00
DISI	Indisponibilidad forzada por Disparo	Horas	0.00	0.00	0.00	0.00	0.27	0.00
Z	Indisponibilidad Causas Ajenas	Horas	4.96	4.96	4.96	3.18	4.96	4.96
	Tiempo total de Indisponibilidad	Horas	127.61	149.95	747.33	3,760.98	1,920.90	173.45
	Número de Arranques exitosos	No.	57	84	75	44	29	46
	Número de Arranques fallidos	No.	0	1	1	1	0	0
	Índice de Disponibilidad	%	98.54	98.29	91.47	57.07	78.07	98.02
w	Índice de Confiabilidad	%	99.99	99.72	92.73	57.92	79.16	99.79
)RE	Índice de Indisponibilidad No Programada	%	0.01	0.28	7.27	42.08	20.84	0.21
NDICADORES	Tiempo promedio para fallar (TPPF)	h	430.89	218.46	316.94	231.39	115.22	383.89
)	Tiempo promedio para reparar (TPPR)	h	1.47	5.25	210.20	1,211.46	360.76	9.93
N	Factor de Carga	%	98.20	97.95	96.65	93.95	93.86	99.45
	Factor de Utilización	%	9.84	12.47	10.85	7.92	6.58	8.76
	Factor de Planta	%	9.66	12.21	10.49	7.44	6.17	8.72

Fuente: Elaboración propia

En el Ecuador existe una época de estiaje entre los meses de octubre a marzo, razón por la cual en este periodo se hace necesario que las centrales de generación termoeléctricas se encuentren con el grado más alto de disponibilidad con el fin de mitigar el impacto de las racionalizaciones energéticas como consecuencia de no contar con la potencia hidroeléctrica necesaria para abastecer al sistema eléctrico nacional.

Las empresas buscan alcanzar la mayor disponibilidad posible en su producción y es por aquello que en este estudio se busca determinar los factores que están afectando a esta central; mediante un enfoque sistémico kantiano (Mora Gutiérrez, 2005), afirma que la disponibilidad está estrechamente relacionada con los factores humanos, equipos y entorno de la organización.

Materiales y métodos

Materiales

Para recolectar los datos necesarios al realizar la evaluación de los diferentes criterios establecidos que afectan a la disponibilidad; mediante la tabla 3, se detallan los instrumentos a utilizar en el análisis de las diferentes variables de este estudio.

Tabla 3Programa general de la investigación

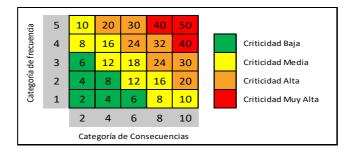
Tarea	Objeto de estudio	Aspectos analizados	Instrumento	Lugar
1	Técnicos de operación y mantenimiento	Nivel de conocimientos y experiencia laboral	-Evaluación -Entrevistas	Departamento de operaciones. Departamento de mantenimiento.
2	Criticidad de los equipos	-Frecuencia de fallas -Impactos por fallas	-Bitácoras -Entrevistas -Ordenes de trabajo	Departamento de operaciones. Casa de máquinas.
3	Fallas y efectos en los equipos críticos	-Modos de falla -Prioridad de los riesgos	-Manual de equipos -Entrevistas -Bitácoras	Departamento de mantenimiento. Casa de máquinas.
4	Indicadores de disponibilidad	-Tiempos operativos -Tiempos de falla -Tiempos de mantenimiento	-Bitácoras -Ordenes de trabajo	Departamento de operaciones. Casa de máquinas.

Fuente: Elaboración propia

Métodos

Al realizar una determinación de una manera general de los parámetros asociados al tipo de investigación de campo que se lleva a cabo, se realiza el estudio siguiendo las pautas de los métodos hipotético-deductivo, analítico y estadístico. El procedimiento metodológico a seguir incluye la utilización de las siguientes técnicas y herramientas:

1°. Validación de competencias del personal técnico y entorno laboral.


Consiste en el reconocimiento de las competencias personales con las que cuenta el personal técnico que labora en la parte operativa y mantenimiento de la central; los autores (Spencer & Spencer, 1993), definen que las competencias son características subyacentes que adquieren las personas de las cuales se reflejan: motivos, rasgos, auto concepto, conocimiento y destreza. En concordancia de criterio (Sandoval y otros, 2010), describen que la competencia está ligada al conjunto de conceptos, métodos y actitudes en torno a la acción laboral en donde un trabajador competente no responde únicamente a cumplir una tarea especifica, sino que posee la capacidad de afrontar las eventualidades que se susciten en el desarrollo de la misma.

Mediante la realización de evaluaciones al recurso humano se pueden generan beneficios principalmente a los empleados de una organización, razón por la cual (Alveiro Montoya, 2009) describe los factores que pudiesen ser aplicados a una evaluación, tales como: conocimiento del cargo, calidad y presentación del trabajo, cantidad de trabajo cumplido, puntualidad, planeación y organización, toma de decisiones, relaciones interpersonales, delegación y control, sentido de pertenencia, dinamismo, responsabilidad, iniciativa, adaptación, seguridad, dominio, comunicación y presentación personal, etc.

2°. Jerarquización de los equipos mediante el uso de la matriz de criticidad cualitativa

Mediante la jerarquización de los equipos que intervienen en el proceso productivo se establecerán cuáles son los equipos críticos a donde debería dirigirse el mayor control técnico y económico. Se afirma que el razonamiento de esta técnica es de naturaleza cualitativa en donde se estima la probabilidad de ocurrencia de los eventos y sus consecuencias mediante la utilización de una escala relativa sin rangos explícitos (Mata Solís, 2020). La figura 2, representa una matriz de criticidad 5X5 sobre la cual serán evaluados los rangos de criticidad de los diferentes activos correspondientes a la muestra del estudio.

Figura 2
Matriz de criticidad 5X5

Fuente: Elaboración propia

La estimación del riesgo se basa en los valores categorizados de frecuencia y consecuencia que se detallan en la tabla 4.

Tabla 4
Rango de valores para determinación del nivel de criticidad de activos

Estimación de frecuencias	Estimación de consecuencias
1. Extremadamente improbable	1. No severa
2. Improbable	2. Poco severa
3. Algo probable	3. Medianamente severa
4. Probable	4. Muy severa
5. Muy probable	5. Extremadamente severa

Fuente: Elaboración propia

De acuerdo a las características del proceso productivo de la organización en estudio, se utilizarán los criterios de la tabla 5, la misma que cuenta con valores preestablecidos que podrían adaptarse de acuerdo a las necesidades del proceso de cualquier ámbito productivo. La determinación del nivel de criticidad de cada activo respondería a la multiplicación del valor ponderado de frecuencia de fallas de cada activo por el resultado de la sumatoria de cada consecuencia al producirse una falla en el mismo.

Tabla 5Criterios y sus ponderaciones para categorizar los activos

FRECUENCIA DE FALLAS	Ponderación
Nunca ha ocurrido un evento	1
No se presentó ningún evento en un año	2
Entre 1 y 3 eventos al año	3
Entre 4 y 6 eventos al año	4
Mas de 6 eventos al año	5
AFECTACIÓN A LA SEGURIDAD Y AMBIENTE	Ponderación
Sin ningún impacto a la seguridad o al ambiente	1
Alarma leve a la seguridad o incidente ambiental leve	2
Lesiones físicas leves o afectación controlable al ambiente	3
Lesiones incapacitantes o afectación sensible al ambiente	4
Muerte o alto impacto ambiental	5
NIVEL DE INDISPONIBILIDAD PRODUCTIVA	Ponderación
No genera indisponibilidad	1
Indisponibilidad hasta el 25%	2
Indisponibilidad del 25% al 50%	3
Indisponibilidad del 50% al 75%	4
Indisponibilidad del 75% al 100%	5
TIEMPO DE CORRECCIÓN DE FALLAS	Ponderación
La acción correctiva es menor a 1 hora	1
La acción correctiva demora entre 1 a 3 horas	2
La acción correctiva demora entre 3 a 8 horas	3
La acción correctiva demora entre 8 a 24 horas	4
	5

Fuente: Elaboración propia

3°. Identificación de los fallos y sus efectos mediante la metodología AMFE

Mediante este método se evaluará el índice de prioridad de riesgos de los fallos asociados a los equipos que se logren caracterizar en una escala de alta criticidad, se podrá identificar la forma de los fallos y la manera de corregirlos. Mediante el modelo propuesto de la tabla 6, se realizará la identificación de los diferentes modos de fallo y los aspectos asociados que requiere dicho formulario.

Tabla 6 Formulario propuesto AMFE

ANÁLISIS MODAL DE FALLOS Y EFECTOS (A.M.F.E.)											
AMFE DE PROYECTO AMFE DE PROCESO DENOMINACIÓN DEL COMPONENTE / PARTE CÓDIGO DE IDENTIFICACIÓN DEL COMPONENTE											
NOMBREY DPTO.		COORDINADOR: (Nombre /	Dpte	o.)			MODELO/SISTEMA/FABRICACIÓN				
	FALLOS POTENCIALES						L				RESPONSA-
OPERACIÓN O FUNCIÓN	FALLO N°	MODOS DE FALLO	EFECTOS CAUSAS DEL MODO DE FALLO		MEDIDAS DE ENSAYO Y CONTROL PREVISTAS	F	G	D	IPR	ACCIÓN CORRECTORA	BLE / PLAZO

Fuente: (Bestratén Bellovi y otros, 2004)

4° Evaluación de disponibilidad mediante indicadores puntuales

Una unidad generadora de energía eléctrica se considera dentro de los elementos de mayor importancia en un sistema eléctrico de potencia puesto que sin ella no habría energía que transportar y ser distribuida al consumidor final, en este caso el estudio de la disponibilidad se encuentra relacionado con los atributos de confiabilidad y productividad (Ceron Suchini, 2005).

En este sentido (Mora, 2009), afirma que existe una relación entre disponibilidad, confiabilidad y mantenibilidad; razón por la que intervienen los tiempos útiles de funcionamiento y los tiempos de falla. Para el cálculo de disponibilidad mediante indicadores puntuales, (Buenaño Moyano y otros, 2019) detallan aquellos que tienen un mayor uso empresarial mediante la tabla 7.

Tabla 7 Indicadores puntuales de disponibilidad

Disponibilidad	MUT	MUT = Tiempo medio de
Genérica	$A_G = \frac{MOT}{MUT + MDT}$	funcionamiento.
		MDT = Tiempo medio de
		indisponibilidad.
Disponibilidad	$\Lambda = \frac{MTBF}{MTBF}$	MTBF = Tiempo medio
Inherente	$A_I = \frac{1}{MTBF + MTTR}$	entre fallas.
		MTTR = Tiempo medio
		para reparar.
Disponibilidad		MTBM = Tiempo medio
Alcanzada		entre mantenimientos.
	MTBM	$MTBM_C = Tiempo$
	$A_A = \frac{MTBM}{MTBM + \overline{M}}$	medio entre mants.
	HIDH H	correctivos.
	1	$MTBM_P$ = Tiempo
	1 1	medio entre mants.
	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	planificados.
	$-\frac{MTTR}{M}M_{P}$	\bar{M} = Tiempo medio de
	$\frac{1}{1} + \frac{\frac{MTTK}{MTBM_C} + \frac{M_P}{MTBM_P}}{\frac{MTTK}{MTBM_P}}$	mantenimiento.
	1 1 1 1 1	MTTR = Tiempo medio
	$\frac{1}{MTBM_C} + \frac{1}{MTBM_P} - \frac{1}{MTBM_C} + \frac{1}{MTBM_P}$	para reparar.

	nups.//doi.org/10.500	48/MQR20223.8.1.2024.430-409
		M_P = Tiempo medio de mantenimiento planeado.
Disponibilidad Operacional	$A_{O} = \frac{MTBM}{MTBM + \overline{M'}}$ $= \frac{\frac{1}{\frac{1}{MTBM_{C}} + \frac{1}{MTBM_{P}}}}{\frac{1}{MTBM_{C}} + \frac{1}{MTBM_{P}} + \frac{MTR}{MTBM_{C}} + \frac{M_{P}}{MTBM_{P}}}{\frac{1}{MTBM_{C}} + \frac{1}{MTBM_{P}}}$	 M' = Tiempo medio de mantenimiento, incluye los tiempos logísticos LDT y administrativos ADT. MTTR = Tiempo medio para reparar, incluye los tiempos LDT y ADT. M_P = Tiempo medio de mantenimiento planeado, incluye los tiempos LDT y ADT. y ADT.
Disponibilidad	MTBM'	A más de los apartados
operacional	$A_{GO} = \frac{MTBM'}{MTBM' + \overline{M'}}$	anteriores, se incluyen los
generalizada	$= \frac{\frac{1}{\frac{1}{MTBM_{C}} + \frac{1}{MTBM_{P}}}}{\frac{1}{\frac{1}{MTBM_{C}} + \frac{1}{MTBM_{P}}} + \frac{\frac{MTTR}{MTBM_{C}} + \frac{M_{P}}{MTBM_{P}}}{\frac{1}{MTBM_{C}} + \frac{1}{MTBM_{P}}}$	tiempos de espera para producir o Ready Times.

Fuente: (Buenaño Moyano y otros, 2019)

Resultados

1°. Situación del personal técnico y entorno laboral

Realizadas las evaluaciones se evidencia que el personal técnico está plenamente calificado para realizar las tareas propias de sus funciones, a excepción de algunos aspectos propios del entorno laboral y de las cuales se detallan los siguientes criterios:

- El 100% del personal cuenta con una formación académica superior de carácter técnico, se encuentra dentro de los parámetros requeridos para el puesto.
- El personal técnico de mantenimiento y operación tiene un tiempo superior a 8 años de labores en esta empresa.
- En un rango mayor al 70% del personal cuenta con experiencia anterior de trabajo relacionada con las actividades que desempeña en la actualidad.
- El personal técnico de mantenimiento, a pesar de que cuenta con sistema informático de mantenimiento, no lleva un registro de los modos de falla y la forma de corrección al ser reportado un mantenimiento correctivo.
- El personal técnico de operación no cuenta con un manual o carta de operación definido para la correcta operación de las unidades de generación eléctrica.
- Los registros de los parámetros de operación se realizan en un formato que no cuenta con valores de los rangos de operación de las unidades de generación.

- El personal técnico de mantenimiento y operación no ha recibido capacitación sobre aspectos relacionados a las funciones propias que desempeña en el área de trabajo.

2°. Jerarquización de los equipos

Mediante la identificación de los equipos y sistemas que intervienen dentro del proceso productivo de la organización, se procede a realizar la clasificación del nivel de criticidad mediante los criterios propuestos en la tabla 5, y cuyos resultados son contrastados en la matriz de criticidad de la figura 2. En la tabla 8, se reflejan los resultados obtenidos al categorizar los activos evaluados, de entre los cuales pasaran al análisis de la siguiente fase los activos considerados de alta y muy alta criticidad.

Tabla 8

Jerarquización de equipos y sistemas de la central termoeléctrica en estudio

DENOMINACIÓN DE EQUIPO	FRECUENCIA DE FALLAS	SEGURIDAD Y AMBIENTE	DISPONIBILIDAD	M ANTENIM IENTO CORRECTIVO	CONSECUENCIAS	CRITICIDAD	JERARQUIZACIÓN
Motor de combustión interna	5	2	3	3	8	40	Criticidad Muy Alta
Compresor de aire para arranque	2	1	5	3	9	18	Criticidad Media
Bomba de recepcción de combustible	1	1	1	3	5	5	Criticidad Baja
Bomba de transferencia de combustible	1	2	4	3	9	9	Criticidad Media
Purificadora de combustible	2	2	1	4	7	14	Criticidad Media
Transformador de potencia auxiliares	2	1	3	1	5	10	Criticidad Media
Generador Sincrónico	1	1	3	5	9	9	Criticidad Media
Subestación Eléctrica	2	2	4	4	10	20	Criticidad Alta
Interruptor de Potencia	2	2	3	5	10	20	Criticidad Alta
Relés de protección eléctrica	1	4	2	2	8	8	Criticidad Media
Sistema contra incendios	2	5	1	5	11	22	Criticidad Alta

Fuente: Elaboración propia

Como resultado se tiene que los activos a los cuales se debe prestar una mayor atención son: motores principales de combustión interna, subestación eléctrica, interruptores de potencia y sistema contra incendios.

3°. Aplicación de la metodología AMFE

Mediante el uso de esta metodología se determinan las fallas funcionales más críticas que afectan o pudiesen afectar la disponibilidad de los equipos considerados de criticidad alta en la tabla 8. En la tabla 9, se representa la estimación de las consecuencias de las fallas que pueden presentarse en los componentes asociados a los motores de combustión interna.

Tabla 9 Aplicación de formato AMFE en motor de combustión interna y sus componentes

			ANÁLI	SIS MODAL DE FA			<u> </u>			
		AMFE DE I	PROCESO				DEL COMP		CÓDIGO DE ID	ENTIFICACIÓN
	NOM	BRE Y DPTO. DE LOS PAR	TICIDANITES V/O DDO	VEEDOR			(Nombre		MODELO/CICTEN	IA/FABRICACIÓN
	NOIVII	PRODUCCIÓN / N		VEEDOR			LIN VÉLEZ		IVIODELO/3I3TEIV	IA/FABRICACION
OPERACIÓN O	FALLO	T NODOCCION / IV	FALLOS POTENCIALE	S			ACTUAL	711	ACCIÓN	
FUNCIÓN	Nº	MODOS DE FALLO	EFECTOS	CAUSAS DEL MODO DE FALLO	G	F	D	IPR	CORRECTORA	RESPONSABLE
Gobernor	1.1	Falla de control	Control brusco de potencia	Carbones de motor eléctrico	5	7	2	70	Reajustar conectores de los cárbones	Mantenimiento eléctrico
Gobernor	1.2	Falla de control	Variación de potencia	Mecanismo con desgaste	8	5	3	120	Lubricar piezas móviles	Mantenimiento mecánico / técnicos de operación
Gobernor	1.3	Falla de control	Imposibilidad de apagar motor	Selenoide de STOP defectuoso	8	7	3	168	Pruebas de control de fallas	Mantenimiento eléctrico / técnicos de operación
Sistema de enfriamiento	2.1	Sobrecalentamiento	Temperatura fuera de rango	Bombas de agua defectuosas	8	4	5	160	Verificar funcionamiento de instrumentación	Mantenimiento mecánico
Sistema de enfriamiento	2.2	Fuga	Pérdida de agua desmineralizada	Bridas y válvulas con sellos en mal estado	3	5	5	75	Inspección y reajuste	Mantenimiento mecánico
Sistema de enfriamiento	2.3	Sobrecalentamiento	Temperatura fuera de rango	Ventilador y motor de radiador defectuoso	8	2	6	96	Reajuste de aspas y bandas de ventilador	Mantenimiento mecánico
Sistema de enfriamiento	2.5	Corrosión	Tuberias y ductos débilitados	Agua sin tratamiento	5	4	4	80	Análisis y dosificación de quimicos	Departamento químico
Sistema de arranque	3.1	Sin energía	Sin movimento en el cigüeñal	Motores de arranque defectuosos	8	6	3	144	Mantenimiento de piezas móviles	Mantenimiento mecánico
Sistema de arranque	3.2	Falla de control	No se produce movimento en el	Botón de arranque o finales de carrera fuera	4	7	3	84	Calibración de finales de carrera en el gobernor	Mantenimiento eléctrico
Sistema de arranque	3.3	Falla de control	No se produce movimento en el	Válvula neumática sin control	4	7	4	112	Limpieza y lubricación de mecanismos internos	Mantenimiento mecánico
Sistema de Iubricación	4.1	General	Baja presión de Iubricación	Bomba de aceite Iubricante defectuosa	9	2	6	108	Mediciones de condición: termografía y vibraciones	Mantenimiento mecánico
Sistema de Iubricación	4.2	Bloqueo / taponamiento	Alta presión de lubricación	Filtros obstruidos	7	7	3	147	Cambio de filtros mediante planificación	Mantenimiento mecánico
Sistema de Iubricación	4.3	Contaminación	Baja/alta presión de lubricación -	Aceite lubricante deteriorado	9	5	5	225	Cambios de aceite según resultados de análisis	Departamento químico / técnicos de operación
Sistema de Iubricación	4.4	Fuga	Componentes con lubricación	Cañerias rotas o junta averiada	8	5	3	120	Cambios de cañerias o acoples	Mantenimiento mecánico
Sistema de Iubricación	4.5	Rotura	Contaminación de aceite lubricante	Intercooler aceite/agua agrietado o roto	7	5	2	70	Soldar cañerias o partes defectuosas	Mantenimiento mecánico
Turbo compresor	5.1	Desgaste	Contaminación ambiental elevada	Sellos y cojinetes de turbinas en mal estado	8	5	5	200	Remanufactura de carcaza y turbina / Balanceo	Mantenimiento mecánico
Turbo compresor	5.2	Desgaste	Variaciones en la potencia / aumento	Turbina con desgaste y fuera de tolerancias	8	5	5	200	Remanufactura de carcaza y turbina / Balanceo	Mantenimiento mecánico
Turbo compresor	5.3	Deformación	Inestabilidad de velocidad en	Falla en el embrague ROOFTOP	8	5	5	200	Cambio de elemento defectuoso	Mantenimiento mecánico
Inyección de combustible	6.1	Falla de control	Imposibilidad de funcionamiento del	Válvula de suministro fuera de control	8	8	3	192	Limpieza de radar del tanque diario	Mantenimiento eléctrico
Inyección de combustible	6.2	Sin presión	Pérdida de potencia	Bomba de inyección defectuosa	7	4	3	84	Cambio de piezas móviles internas	Mantenimiento mecánico
Inyección de combustible	6.3	Sin presión	Pérdida de potencia	Cañerias rotas o con fugas	8	3	3	72	Cambios de cañerias o acoples	Mantenimiento mecánico
Inyección de combustible	6.4	Bloqueo / taponamiento	Variaciones en la potencia	Filtros obstruidos	5	7	1	35	Reemplazo de filtros	Técnicos de operación
Inyección de combustible	6.5	Bloqueo / taponamiento	Variaciones en la potencia / humo en	Inyectores mal calibrados	5	5	3	75	Calibración de inyectores	Mantenimiento mecánico
Conjunto do	7.1	Contaminación	Ralladuras en el cigüeñal / aumento	Aceite lubricante deteriorado	9	5	5	225	Análisis periódicas de muestras de aceite	Departamento químico
Conjunto de fuerza	8.1	Bloqueo / taponamiento	Mala combustión y pérdida de	Filtros de aire obstruidos	4	5	3	60	Limpieza interna y reemplazo de aceite	Mantenimiento mecánico
Conjunto de fuerza	8.2	Desgaste/rotura	Gases excesivos / potencia reducida	Rines de pistones averiados	4	5	5	100	Reemplazo de rines	Mantenimiento mecánico
Conjunto de fuerza	8.3	Bloqueo / taponamiento	Presencia de candelilla en gases	Camaras de aire de admisión sucias	3	4	4	48	Limpieza de cámaras de aire	Mantenimiento mecánico

Fuente: Elaboración propia

En la tabla 10, se representa la estimación de las consecuencias de las fallas que pueden presentarse en los componentes asociados a la subestación eléctrica, interruptores de potencia y sistema contra incendios.

Tabla 10

Aplicación de formato AMFE en subestación eléctrica, interruptor de potencia y sistema contra incendios

			ANÁLI	SIS MODAL DE FA	LLOS Y	EFECT	OS (A.I	VI.F.E.)				
		AMFE DE	PROCESO				DEL COMP		CÓDIGO DE IDENTIFICACIÓN			
	NOM	BRE Y DPTO. DE LOS PAR		VEEDOR	COORD	INADOR:	(Nombre	/ Dpto.)	MODELO/SISTEM	IA/FABRICACIÓN		
		PRODUCCIÓN / N	IANTENIMIENTO FALLOS POTENCIALE	c	ED		LIN VÉLEZ ACTUAL	Α.				
OPERACIÓN O FUNCIÓN	FALLO Nº	MODOS DE FALLO	EFECTOS	CAUSAS DEL MODO DE FALLO	G	F	D	IPR	ACCIÓN CORRECTORA	RESPONSABLE		
Aisladores	1.1	Falla a tierra / aislamiento	Fuga de corriente y descarga a tierra	Suciedad en la superficie	8	5	5	200	Inspección y limpieza de aisladores	Mantenimiento eléctrico		
Aisladores	1.2	Rotura	Conductores sin posición fija	Ajuste inadecuado en pernos de fijación	8	5	2	80	Uso de llave dinámometrica	Mantenimiento eléctrico		
Seccionadores	2.1	Sobrecalentamiento	Variaciones de voltaje / aumento	Falso contacto en puntos de conexión	6	6	3	108	Análisis termográfico	Mantenimiento eléctrico		
Seccionadores	2.2	Falla a tierra / aislamiento	Fuga de corriente y descarga a tierra	Suciedad en la superficie / aislante	8	5	5	200	Inspección y limpieza de aisladores	Mantenimiento eléctrico		
Seccionador fusible	2.3	Atascamiento	Sin control de apertura del	Sistema mecánico con presencia de desgaste o	6	5	3	90	Mantenimiento de piezas mecánicas	Mantenimiento eléctrico		
TRAFO	3.1	Cortocircuito	Perdida de tensión eléctrica en el	Aceite dieléctrico deteriorado	9	2	6	108	Análisis de las propiedades de aceite dieléctrico	Mantenimiento eléctrico / departamento químico		
TRAFO	3.2	Energía/voltaje inapropiado	Desbalance de fases	Falso contacto en puntos de conexión	6	6	3	108	Análisis termográfico	Mantenimiento eléctrico		
TRAFO	3.3	Sobrecalentamiento	Variaciones de voltaje / aumento	Falso contacto en puntos de conexión	6	6	3	108	Análisis termográfico	Mantenimiento eléctrico		
TRAFO	3.4	Sobrecalentamiento	Aumento de temperatura en el	Ventiladores de refrigeración fuera de	6	5	2	60	Mantenimiento a ventilador eléctrico	Mantenimiento eléctrico		
Cables de conexión	4.1	Falla a tierra / aislamiento	Fuga de corriente y descarga a tierra	Aislante deteriorado	9	2	6	108	Prueba de aislamiento eléctrico	Mantenimiento eléctrico		
Cables de conexión	4.2	Sobrecalentamiento	Aislante derretido y conductor	Falso contacto en puntos de conexión	6	5	3	90	Análisis termográfico	Mantenimiento eléctrico		
Cables de conexión	4.3	Corrosión	Variaciones de voltaje / aumento	Unión de diferentes metales	6	5	3	90	Cambio de conectores cobre/aluminio	Mantenimiento eléctrico		
		AMFE DE	PROCESO				DEL COMP		CÓDIGO DE ID	ENTIFICACIÓN		
Disyuntor	1.1	Falla de control	No permite abrir o cerrar el sistema de	Mecanismo trabado/botón averiado	9	3	6	162	Limpieza y lubricación de piezas móviles	Mantenimiento eléctrico		
Disyuntor	1.2	Falla de control	No carga el sistema mécanico para la	Motor eléctrico averiado	5	4	5	100	Mantenimiento de motor de carga	Mantenimiento eléctrico		
Disyuntor	1.3	Energía / voltaje inapropiado	Variaciones eléctricas	Contactos desgastados	7	2	6	84	Reemplazo de contactos de conmutación	Mantenimiento eléctrico		
					DENIONAL	INACIÓN	DEL COMP	ONENTE	CÓDIGO DE ID	ENTIFICACIÓN		
		AMFE DE	PROCESO				TRA INCEN		CODIGO DE ID	ENTIFICACION		
MCI	1.1	Sin energía / voltaje	Perdida total de funcionabilidad del	Bateria descargada	9	6	5	270	Verificar funcionamiento de cargador	Mantenimiento eléctrico / técnicos de operación		
MCI	1.2	Falla de control	Sistema sin capacidad de	HMI defectuoso	5	3	4	60	Reemplazo de componente	Mantenimiento eléctrico		
MCI	1.3	Sobrecalentamiento	Apagado automatico del	Valvula de control de enfriamiento atascada o	7	4	5	140	Limpieza de válvula y selenoide	Mantenimiento eléctrico / mantenimiento mecánico		
Bomba	2.1	Cavitación	Calentamiento, baja presión y	Aire en tuberia de succión	7	4	3	84	Revisión de válvulas check	Mantenimiento mecánico / técnicos de operación		
Bomba	2.2	Sobrecalentamiento	Sobrepresión dentro del sistema	Válvulas de descarga cerradas	4	5	3	60	Apertura constante de sistema	Técnicos de operación		
Tuberias e hidrantes	3.1	Corrosión	Derrame de agua	Agua no tratada y estancada	3	5	6	90	Dosificación de quimicos y recirculación	Departamento químico / técnicos de operación		
Tuberias e hidrantes	3.2	Fuga	Derrame de agua	Mal ajuste en bridas y empaquetaduras	3	5	2	30	Reajuste de pernos de sujeción	Mantenimiento mecánico		
Tuberias e hidrantes	3.3	Bloqueo / taponamiento	Descarga de agua insuficiente	Acumulación de suciedad en roceadores	5	5	3	75	Limpieza de roceadores	Mantenimiento mecánico		
Tuberias e hidrantes	3.4	Falla de control	Sistema sin activación	Sensores de supervisión defectusos	9	4	6	216	Prueba de funcionamiento y reemplazo	Mantenimiento eléctrico		

Fuente: Elaboración propia

4°. Indicadores de disponibilidad

Al realizar el respectivo análisis productivo del año 2022 en forma de línea de tiempo, se identifican de forma clara y precisa los tiempos asociados a la determinación de cada tipo de disponibilidad en las que se basa el estudio que permitirá establecer el tipo de indicador más idóneo para el control correspondiente. En la tabla 11, se registran las cantidades de horas verificadas e informadas que son la base en este análisis.

Tabla 11 Análisis de tiempos asociados a las unidades de generación en estudio

				1							_	l estudio
UNIDAD 4			RAS	4	UNIDAD 5 -			UNIDAD 6 -			-	UNIDAD 4
ESTADO STAND BY	HORAS 446	RT			ESTADO STAND BY	HORAS 490		ESTADO STAND BY	HORAS 1093			
GENERACIÓN	3	UT			GENERACIÓN	1	UT	GENERACIÓN	6	UT		TIEMPOS INFORMADOS
STAND BY M. PREVENTIVO	127 72	RT MP			M. CORRECTIVO ADMINISTRATIVO	925 672	MC LDT	STAND BY GENERACIÓN	40 9	RT UT		GENERACIÓN 692.72 Horas
STAND BY	184	RT			M. CORRECTIVO	159	MC	STAND BY	14	RT		M DDENENGING 102 41 H
GENERACIÓN	6	UT			GENERACIÓN	7	UT	GENERACIÓN	12	UT		M. PREVENTIVO 123.41 Horas
STAND BY GENERACIÓN	256 4	RT UT			STAND BY GENERACIÓN	23 24	RT UT	STAND BY GENERACIÓN	84 11	RT UT		M. CORRECTIVO 3627.39 Horas
STAND BY	15	RT			STAND BY	14	RT	STAND BY	42	RT		
M. CORRECTIVO STAND BY	8 15	MC RT			GENERACION STAND BY	10 83	UT RT	GENERACION STAND BY	4 164	UT RT		TIEMPOS VERIFICADOS
M. CORRECTIVO	8	MC			M. CORRECTIVO	3	MC	GENERACIÓN	15	UT		GENERACIÓN 693 Horas
STAND BY	97	RT UT			STAND BY	167 9	RT UT	STAND BY	76	RT UT		GENERACION 693 Horas
GENERACIÓN STAND BY	4 11	RT			GENERACIÓN STAND BY	16	RT	GENERACIÓN STAND BY	12 58	RT		M. PREVENTIVO 124 Horas
M. CORRECTIVO	7	MC			GENERACIÓN	8	UT	M. CORRECTIVO	8	MC		M. CORRECTIVO 3680 Horas
GENERACIÓN STAND BY	8 60	UT RT			STAND BY GENERACIÓN	138 7	RT UT	STAND BY GENERACIÓN	35 7	RT UT		
GENERACIÓN	8	UT			STAND BY	110	RT	STAND BY	48	RT		STAND-BY 4263 Horas
STAND BY	116 10	RT UT			GENERACIÓN	12 60	UT RT	GENERACIÓN	9	UT RT		
GENERACIÓN STAND BY	36	RT			STAND BY GENERACIÓN	12	UT	STAND BY GENERACIÓN	62 14	UT		1010 10 7
GENERACIÓN	9	UT			STAND BY	14	RT	STAND BY	8	RT		UNIDAD 5
STAND BY GENERACIÓN	64 11	RT UT			GENERACION M. CORRECTIVO	6 8	UT MC	M. CORRECTIVO GENERACIÓN	3 11	MC UT		TIEMPOS INFORMADOS
STAND BY	85	RT			STAND BY	604	RT	STAND BY	62	RT		GENERACIÓN 575.83 Horas
GENERACIÓN STAND BY	36 82	UT RT			M. PREVENTIVO STAND BY	59 792	MP RT	GENERACIÓN STAND BY	11 64	UT RT		
GENERACIÓN	10	UT			M. CORRECTIVO	17	MC	M. PREVENTIVO	92	MP	-	M. PREVENTIVO 113.91 Horas
M. CORRECTIVO	8	MC			GENERACIÓN	1	UT	STAND BY	41	RT		M. CORRECTIVO 1801.76 Horas
GENERACIÓN STAND BY	14 10	UT RT			STAND BY GENERACIÓN	1821 8	RT UT	GENERACIÓN STAND BY	39 60	UT RT		
M. CORRECTIVO	4	MC			STAND BY	384	RT	GENERACIÓN	16	UT		TIEMPOS VERIFICADOS
GENERACIÓN M. CORRECTIVO	11 2	UT MC			GENERACIÓN STAND BY	16 48	UT RT	STAND BY GENERACIÓN	60 11	RT UT		
STAND BY	61	RT			GENERACIÓN	15	UT	STAND BY	12	RT		GENERACIÓN 576 Horas
GENERACIÓN	12 154	UT RT			STAND BY	73 22	RT	GENERACIÓN	11 110	UT RT		M. PREVENTIVO 114 Horas
STAND BY GENERACIÓN	12	UT			GENERACIÓN STAND BY	13	UT RT	STAND BY GENERACIÓN	12	UT		M CORRECTIVO 1921 H
STAND BY	22	RT			GENERACIÓN	37	UT	STAND BY	10	RT		M. CORRECTIVO 1821 Horas
GENERACIÓN STAND BY	29 33	UT RT			STAND BY GENERACIÓN	82 12	RT UT	M. CORRECTIVO STAND BY	8 17	MC RT	_	STAND-BY 6249 Horas
M. CORRECTIVO	8	MC			STAND BY	274	RT	GENERACIÓN	12	UT		
STAND BY GENERACIÓN	36 28	RT UT			GENERACIÓN STAND BY	5 310	UT RT	STAND BY M. CORRECTIVO	11 4	RT MC		
STAND BY	57	RT			GENERACIÓN	6	UT	STAND BY	70	RT		UNIDAD 6
GENERACIÓN STAND BY	25 111	UT RT			STAND BY GENERACIÓN	88 7	RT UT	GENERACIÓN STAND BY	8 17	UT RT		TIEMPOS INFORMADOS
GENERACIÓN	12	UT			STAND BY	351	RT	GENERACIÓN	7	UT		CENERACIÓN 2/2711
STAND BY	12	RT			M. PREVENTIVO	55	MP	STAND BY	258	RT		GENERACIÓN 767.77 Horas
GENERACIÓN M. CORRECTIVO	2 420	UT MC			STAND BY GENERACIÓN	141 13	RT UT	GENERACIÓN STAND BY	10 60	UT RT		M. PREVENTIVO 150.42 Horas
ADMINISTRATIVO	2456	LDT			STAND BY	52	RT	GENERACIÓN	12	UT		M. CORRECTIVO 18.07 Horas
M. CORRECTIVO GENERACIÓN	198 2	MC UT			GENERACIÓN M. CORRECTIVO	53 26	UT MC	STAND BY GENERACIÓN	14 6	RT UT		M. CORRECTIVO 10.07 Holas
STAND BY	525	RT			STAND BY	2	RT	STAND BY	38	RT		TIEMPOS VERIFICADOS
M. PREVENTIVO STAND BY	52 159	MP RT			GENERACIÓN M. CORRECTIVO	9 8	UT MC	M. CORRECTIVO STAND BY	8 1417	MC RT	_ [
GENERACIÓN	8	UT			STAND BY	69	RT RT	GENERACIÓN	4	UT		GENERACIÓN 768 Horas
STAND BY	385	RT			GENERACIÓN	35	UT	STAND BY		RT		M. PREVENTIVO 151 Horas
GENERACIÓN STAND BY	4 52	UT RT			M. CORRECTIVO GENERACIÓN	3 107	MC UT	GENERACIÓN STAND BY	8 385	UT RT		
GENERACIÓN	18	UT			STAND BY	30	RT	GENERACIÓN	15	UT		M. CORRECTIVO 31 Horas
M. CORRECTIVO GENERACION	12 2	MC UT			GENERACIÓN	134	UT	STAND BY GENERACION	49 15	RT UT		STAND-BY 7810 Horas
M. CORRECTIVO	4	MC						STAND BY	72	RT		
STAND BY	59	RT						GENERACIÓN	57	UT		
M. CORRECTIVO ADMINISTRATIVO	80 341	MC LDT						STAND BY M. PREVENTIVO	66 59	RT MP	_	
M. CORRECTIVO	124	MC						STAND BY	258	RT		
GENERACIÓN STAND BY	2 208	UT RT						GENERACIÓN STAND BY	5 307	UT RT		
GENERACIÓN	6	UT						GENERACIÓN	9	UT		
STAND BY	88	RT						STAND BY	86	RT		
GENERACION STAND BY	8 550	UT RT						GENERACIÓN STAND BY	10 548	UT RT		
GENERACIÓN	9	UT						GENERACIÓN	88	UT		
STAND BY GENERACIÓN	64 44	RT UT						STAND BY GENERACIÓN	75 16	RT UT		
STAND BY	23	RT						STAND BY	55	RT		
GENERACIÓN STAND BY	37 50	UT RT						GENERACIÓN STAND BY	141 29	UT RT		
GENERACIÓN	169	UT						GENERACIÓN	135	UT		
STAND BY GENERACIÓN	10 130	RT UT						L		•		
GENERACION	130	UI										
<u> </u>							T1 1	rión propis				

Fuente: Elaboración propia

En la representación de la tabla 12, se realizan los cálculos de los diferentes indicadores puntuales de disponibilidad que se aplican en el uso de los tiempos contenidos en la tabla 13, los mismos que reflejan todo el proceso abarcado por las unidades objeto de estudio en el año 2022.

Tabla 12Disponibilidad informada y calculada

DISPONIBILIDAD INFORMADA		
UNIDAD 4	UNIDAD 5	UNIDAD 6
TIEMPO ANUAL 8760 HORAS 11EMPO UTIL 4999.02 HORAS 11EMPO INDISPONIBLE 3760.98 HORAS $A_G = \frac{4999.02}{4999.02 + 3760.98} = 0.570 = 57\%$	TIEMPO ANUAL 8760 HORAS TIEMPO UTIL 6839.1 HORAS TIEMPO INDISPONIBLE 1920.90 HORAS $A_G = \frac{6839.1}{6839.1 + 1920.90} = 0.780 = 78\%$	$A_G = \frac{8586.55}{8586.55 + 173.45} = 0.980 = 98\%$
DISPONIBILIDAD CALCULADA		
UNIDAD 4	UNIDAD 5	UNIDAD 6
DISPONIBILIDAD GENERALIZADA	DISPONIBILIDAD GENERALIZADA	DISPONIBILIDAD GENERALIZADA
$A_G = \frac{57.83}{57.83 + 91.545} = 0.387 = 38.7\%$	$A_G = \frac{72}{72 + 180.4285} = 0.285 = 28.5\%$	$\begin{array}{ccc} \text{MUT} & 96 \\ \text{MDT} & 26 \\ \\ A_G = \frac{96}{96 + 26} = 0.786 = 78.6\% \end{array}$
DISPONIBILIDAD INHERENTE	DISPONIBILIDAD INHERENTE	DISPONIBILIDAD INHERENTE
MTBF 69.4 MTTR 98.111 $A_I = \frac{69.4}{69.4 + 98.111} = 0.414 = 41.4\%$	MTBF 82.28 MTTR 191.5 $A_I = \frac{82.285}{82.285 + 191.5} = 0.300 = 30\%$	MTBF 128 MTTR 6.2 $A_{I} = \frac{128}{128 + 6.2} = 0.953 = 95.3\%$
DISPONIBILIDAD ALCANZADA	DISPONIBILIDAD ALCANZADA	DISPONIBILIDAD ALCANZADA
$\begin{array}{ccc} \text{MTBMc} & 69.4 \\ \text{MTTR} & 98.111 \\ \text{Mp} & 62 \\ \text{MTBMp} & 231.333 \\ \\ A_A = \frac{53.384}{53.384 + 89.777} = 0.372 = 37.2\% \end{array}$	$\begin{array}{ccc} \text{MTBMc} & 82.285 \\ \text{MTTR} & 191.5 \\ \text{Mp} & 57 \\ \text{MTBMp} & 192 \\ \\ A_A = \frac{57.599}{57.599 + 151.150} = 0.275 = 27.5\% \\ \end{array}$	$\begin{array}{ccc} \text{MTBMc} & 128 \\ \text{MTTR} & 6.2 \\ \text{Mp} & 75.5 \\ \text{MTBMp} & 256 \\ \\ A_A = \frac{85.333}{85.333 + 29.3} = 0.744 = 74.4\% \end{array}$
DISPONIBILIDAD OPERACIONAL	DISPONIBILIDAD OPERACIONAL	DISPONIBILIDAD OPERACIONAL
$\begin{array}{ccc} \text{MTBMc} & 69.4 \\ \text{MTTR} & 408.888 \\ \text{Mp} & 62 \\ \text{MTBMp} & 231.333 \\ \\ A_O = \frac{53.384}{53.384 + 328.836} = 0.139 = 13.9\% \\ \end{array}$		$\begin{array}{ccc} \text{MTBMc} & 128 \\ \text{MTTR} & 6.2 \\ \text{Mp} & 75.5 \\ \text{MTBMp} & 256 \\ \\ A_O = \frac{85.333}{85.333 + 29.3} = 0.744 = 74.4\% \\ \end{array}$
DISPONIBILIDAD OPERACIONAL GENERALIZADA	DISPONIBILIDAD OPERACIONAL GENERALIZADA	DISPONIBILIDAD OPERACIONAL GENERALIZADA
$A_{OG} = \frac{\text{MTBMc}}{330.4 + 280.036} = 0.542 = 54.2\%$	$ \begin{array}{c cccc} \text{MTBMc} & 853.125 \\ \text{MTTR} & 260.142 \\ \text{Mp} & 57 \\ \text{MTBMp} & 2275 \\ \\ A_{OG} = \frac{620.454}{620.454 + 204.739} = 0.751 = 75.1\% \\ \end{array} $	MTBMC 1429.666 MTTR 6.2 Mp 75.5 MTBMp 2859.333 $A_{OG} = \frac{953.110}{953.110 + 29.299} = 0.970 = 97\%$

Fuente: Elaboración propia

En la verificación de la disponibilidad informada se evidencia que esta es calculada mediante el uso de la formula general, en donde se usa el tiempo útil total (incluye los tiempos de generación y los tiempos de espera o ready times) y el tiempo no disponible (incluye los tiempos por mantenimiento correctivo y preventivo).

Descripción de la muestra

Para este estudio se estableció una población de equipos y personas:

- La primera muestra corresponde al 50% de los equipos y sistemas de activos físicos (unidades de generación U4, U5 y U6).
- La segunda muestra corresponde al 100% del personal técnico de operación y mantenimiento, integrado por veinte técnicos.

Discusión

A pesar de que las empresas buscan alcanzar el mayor grado de satisfacción operativa, al realizar un análisis para detectar las falencias posibles en la mayoría de los casos se produce de forma aislada y no en conjunto de todos los actores del proceso. Esta investigación se realizó contemplando todos los factores técnicos y operativos, pero sin tener en cuenta el factor económico.

En el desarrollo de esta investigación se contó con la participación del personal técnico de diversas áreas, con aquellos se llegaron a determinar las diferentes falencias presentes en el ámbito productivo de esta organización. Así mismo se logró detallar todas las formas de fallo que pudiesen presentarse en los diferentes equipos que se categorizaron en un nivel de alta criticidad.

Se logró realizar la respectiva verificación de los tiempos asociados al funcionamiento de las unidades de generación para ser contrastados con los tiempos registrados en el informe anual; estos tuvieron una diferencia de varias horas únicamente en los tiempos de indisponibilidad por mantenimiento correctivo, al contrario de los tiempos de producción y mantenimiento planificado en donde las horas son iguales entre lo verificado y lo informado.

Conclusiones

Este estudio se realizó siguiendo un orden para no alterar los resultados o volver a analizar de manera repetitiva por alguna discordancia encontrada en el proceso.

A pesar de que el personal técnico que labora actualmente en esta institución está en condiciones idóneas para el cargo en que presta sus servicios, es imperativo que se disponga de un plan anual de capacitaciones que posibilite la actualización de conocimientos en los aspectos propios del puesto y en la adquisición de nuevos conocimientos en mejoras de sus funciones.

Se hace necesaria la modificación de la planificación del mantenimiento con miras a que se tomen en consideraciones los modos de fallo que representan un alto grado en el índice de prioridad de riesgo asociados a los equipos críticos que se lograron determinar; y en esta misma temática, que sea alimentado el sistema de mantenimiento con información referente a los fallos presentados y la manera más idónea de ser corregidos.

Es de gran importancia que los formatos de registros de parámetros operativos de las unidades de generación cuenten con valores de referencia ya que en la actualidad solamente se pone en consideración el criterio del personal operativo y de mantenimiento dejando a un lado el fundamento del fabricante, con lo cual se generan dudas e incertidumbre que podría desencadenar en malas decisiones operativas y el deterioro acelerado de los activos.

Esta organización por el tipo de servicio que presta, considera el tiempo que está en espera para producir para el cálculo de sus indicadores; en este sentido es importante que se discrimine el cálculo de la disponibilidad en diferentes tipos con el objetivo de determinar en qué parte del proceso están habiendo cuellos de botella para lograr el objetivo deseado. Se logró evidenciar que el cálculo se realizar para una disponibilidad genérica que pudiese estar mal aplicada, con lo cual se aconseja la utilización de la disponibilidad operacional generalizada, la disponibilidad inherente y la disponibilidad alcanzada.

Referencias bibliográficas

Alveiro Montoya, C. (2009). Evaluación deldesempeño como herramienta para el análisis del capital humano. Revista Científica ''Visión de Futuro'', 11(1), 1-22. https://www.redalyc.org/pdf/3579/357935472005.pdf

ARCERNNR. (31 de Marzo de 2023). Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano 2022. 157. Ambato, Ecuador.

https://www.controlrecursosyenergia.gob.ec/estadistica-del-sector-electrico/

Bestratén Bellovi, M., Orriols Ramos, R., & Mata París, C. (2004). NTP 679: Análisis modal de fallos y efectos. AMFE. Notas Técnicas de Prevención. España.

Buenaño Moyano, L. F., Villagrán Cáceres, W. J., & Santillán Mariño, C. J. (Diciembre de 2019). Utilización de la auditoría de mantenimiento y el análisis de confiabilidad, mantenibilidad y disponibilidad (CMD) como herramientas para la identificación de problemas en la gestión de mantenimiento de locomotoras en empresas de ferrocarriles. Revista Científica FIPCAEC, 4, 171-198. https://doi.org/10.23857/129

CENACE. (2020). Informe Anual 2020., (pág. 105). Quito.

CENACE. (2023). Informe Anual 2022. Mercado eléctrico ecuatoriano. Retrieved 07 de Junio de 2023, from https://www.cenace.gob.ec/wp-content/uploads/downloads/2023/04/Parte-1-Informe-Anual-2022.pdf

CEPAL. (15 de Noviembre de 2022). NACIONES UNIDAS. Retrieved 2 de Junio de 2023, from https://www.cepal.org/es/noticias/mundo-alcanza-8-mil-millones-habitantes-cuales-662-millones-viven-america-latina-caribe

Ceron Suchini, R. A. (2005). Disponibilidad, confiabilidad y productividad de unidades generadoras. Guatemala.

Vol.8 No.1 (2024): Journal Scientific Investigar ISSN: 2588–0659 https://doi.org/10.56048/MQR20225.8.1.2024.450-469

EMBER. (2022). Global Electricity Review 2022. Londres. https://doi.org/CC BY-SA 4.0 Guerrero Miranda, A. D., & Quishpe Gaibor, J. S. (mayo de 2019). Ética en la construcción de centrales eléctricas enfocado en el impacto ambiental. Caribeña de Ciencias Sociales. https://www.eumed.net/rev/caribe/2019/05/construccion-centrales-electricas.html

Mata Solís, L. D. (21 de Enero de 2020). Métodos y técnicas de investigación cualitativa. Investigalia. https://investigaliacr.com/investigacion/metodos-y-tecnicas-de-investigacion-cualitativa/

Mora Gutiérrez, L. A. (2005). Mantenimiento estratégico para empresas industriales o de servicios (Primera ed.). Medellín, Colombia: Editorial AMG. Retrieved 17 de Junio de 2023. Mora, A. (2009). Mantenimiento. Planificación, ejecución y control.

Sandoval, F., Miguel, V., & Montaño, N. (2010). Evolución del Concepto de Competencia Laboral.

 $http://www.ucv.ve/fileadmin/user_upload/vrac/documentos/Curricular_Documentos/Evento/Ponencias_6/sandoval_Franklin_y_otros.pdf$

Spencer, L., & Spencer, S. (1993). Evaluación de Competencia en el Trabajo.

Tapia, E. (18 de Octubre de 2023). Gobierno declara emergencia energéticay acelerará contrataciones. Primicias. Retrieved 20 de Noviembre de 2023, from https://www.primicias.ec/noticias/economia/emergencia-energia-electrica-sequia-fenomeno-nino/

Conflicto de intereses:

Los autores declaran que no existe conflicto de interés posible.

Financiamiento:

No existió asistencia financiera de partes externas al presente artículo.

Agradecimiento:

N/A

Nota:

El artículo no es producto de una publicación anterior.